Within very localised areas of the Vulcan Subbasin, the Eocene Grebe Formation sandstones are strongly cemented with carbonate. These cemented sands are recognisable on seismic data as zones of anomalously high velocity, and result in both time 'pull-up' and deterioration of the stack response in the underlying section.To determine the nature and origin of these cemented zones, their isotopic, mineralogical and petrologic compositions have been characterised, their seismic response and areal distribution established, and these observations integrated with ~2,730 km of AGSO water column geochemical ('sniffer-type') data.The carbon isotopic compositions of the carbonate within the cemented Grebe sands are diagnostic of carbonates formed principally via the oxidation of migrating, thermogenic hydrocarbons. Oxidation of the hydrocarbons took place in two stages: an earlier phase led to calcite precipitation, whereas a later phase produced (generally subsidiary) ferroan dolomite/ankerite cementation.Areas of known, present-day hydrocarbon seepage from the seafloor, such as over major faults on the Skua Horst and along the Vulcan Sub-basin/ Londonderry High boundary zone, are invariably associated with zones of highly cemented Eocene sands. Similarly, areas of known Tertiary hydrocarbon seepage, such as those associated with the residual oil columns on the Eider Horst, also contain strongly cemented Eocene sandstones.These observations have established a causal relationship between the presence of these Hydrocarbon-Related Diagenetic Zones (or HRDZs) in the Eocene sandstones and Tertiary-Quaternary hydrocarbon seepage. It is likely that most of the cementation occurred during the Late Miocene/Early Pliocene, when the Grebe Formation sands were at a shallow depth of burial(Recognition of this causal association has allowed several insights to be gained into the exploration potential and reactivation history of structures within the Vulcan Sub-basin. Mapping of the areal distribution of the cemented zones can effectively define hydrocarbon migration pathways. More importantly, however, predictable relationships exist between the seismic expression of the HRDZs, the total amount of hydrocarbons that have leaked from the traps, and the obliquity between the Jurassic and Late Miocene fault trends over the respective structures. A continuum exists between highintegrity accumulations, in which the fault trends are parallel and the HRDZs are small or absent, and breached accumulations, in which a significant obliquity exists between the respective fault trends and the HRDZs are large and seismically-intense.These observations provide a potential predictive tool for evaluating undrilled structures. It may be possible to determine, from the integration of seismic structural mapping and the characterisation of the seismic expression of the HRDZs, not only whether an individual structure is ever likely to have had a hydrocarbon column, but whether that column is likely to be preserved.
Several structural domains are recognised within the Vulcan Sub-basin, Timor Sea. These domains developed during the Jurassic rifting phase and are separated by major transfer zones which trend in a northwest-southeast direction. Within each domain are frequent third order transfers which sub-divide the main northeast trending fault blocks into numerous compartments. These enable structural hydrocarbon traps to be formed, despite a predominant regional dip. They also affect migration pathways.Jurassic fault styles include detached rotational blocks, salt-associated features, tilted fault blocks and 'hourglass' horsts and grabens. These generally have a northeast-southwest orientation. The transfer faulting complicates these features and forms zones of structural complexity with associated poor seismic data quality. A separate fault episode in the north of the sub-basin during the Tithonian resulted in an east-west fault set overprinting the earlier structuring.Intra-Cretaceous fault movement is also recognised and has an important role in early hydrocarbon entrapment.Structural reactivation during the Late Miocene/Early Pliocene of the earlier fault sets modified the geometry of many existing traps. Numerous new traps may also have formed as a result of this tectonism. In many places the resulting geometry is complex, particularly where the younger fault orientation is at an angle to the main Oxfordian fault set. The late-stage movement is primarily extensional, manifested by predominantly normal faults; overall, however, a varying component of strike slip is likely. A divergent strike-slip zone is recognised at the southwest end of the Cartier Trough.The effects of the late stage tectonism tend to mask the seismic expression of Mesozoic hydrocarbon traps resulting in many wells being drilled off-structure at the target horizon. An understanding of the deeper structuring should result in further discoveries in this prospective basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.