Context. β Pictoris is a young nearby system hosting a well-resolved edge-on debris disk, along with at least two exoplanets. It offers key opportunities for carrying out detailed studies of the evolution of young planetary systems and their shaping soon after the end of the planetary formation phase. Aims. We analyzed high-contrast coronagraphic images of this system, obtained in the mid-infrared, taking advantage of the NEAR experiment using the VLT/VISIR instrument, which provides access to adaptive optics, as well as phase coronagraphy. The goal of our analysis is to investigate both the detection of the planet β Pictoris b and of the disk features at mid-IR wavelengths. In addition, by combining several epochs of observation, we expect to constrain the position of the known clumps and improve our knowledge on the dynamics of the disk. Methods. We observed the β Pictoris system over two nights in December 2019 in the 10–12.5 µm coronagraphic filter. To evaluate the planet b flux contribution, we extracted the photometry at the expected position of the planet and compared it to the flux published in the literature. In addition, we used previous data from T-ReCS and VISIR in the mid-IR, updating the star's distance, to study the evolution of the position of the southwest clump that was initially observed in the planetary disk back in 2003. Results. While we did not detect the planet b, we were able to put constraints on the presence of circumplanetary material, ruling out the equivalent of a Saturn-like planetary ring around the planet. The disk presents several noticeable structures, including the known southwest clump. Using a 16-yr baseline, sampled with five epochs of observations, we were able to examine the evolution of the clump. We found that the clump orbits in a Keplerian motion with a semi-major axis of 56.1−0.3+0.4 au. In addition to the known clump, the images clearly show the presence of a second clump on the northeast side of the disk as well as possibly fainter and closer structures that are yet to be confirmed. Furthermore, we found correlations between the CO clumps detected with ALMA and the northeastern and southwestern clumps in the mid-IR images. Conclusions. If the circumplanetary material were located at the Roche radius, the maximum amount of dust determined from the flux upper limit around β Pictoris b would correspond to the mass of an asteroid of 5 km in diameter. Finally, the Keplerian motion of the southwestern clump is possibly indicative of a yet-to-be detected planet or signals the presence of a vortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.