High-order (three-photon or more) above-threshold dissociation (ATD) of H(2)(+) has generally not been observed using 800 nm light. We demonstrate a strong enhancement of its probability using intense 7 fs laser pulses interacting with beams of H(2)(+), HD(+), and D(2)(+) ions. The mechanism invokes a dynamic control of the dissociation pathway. These measurements are supported by theory that additionally reveals, for the first time, an unexpectedly large contribution to ATD from highly excited electronic states.
In a joint experimental and theoretical endeavor, we explore the laser-induced dissociation and ionization dynamics of H 2 + beams using sub-10-fs, 800 nm laser pulses. Our theory predicts considerable control over the branching ratio of two-photon and three-photon above-threshold dissociation (ATD) by gating the dissociation pathway on a few-femtosecond timescale. We are able to experimentally demonstrate this control. Moreover, our theory also shows the importance of the highly excited H(2l) states of H 2 + that contribute to ATD structure in dissociation. As is the case for dissociation, we find that ionization is also sensitive to the effective laser interaction time.
TAE Technologies' research is devoted to producing high temperature, stable, long-lived field-reversed configuration (FRC) plasmas by neutral-beam injection (NBI) and edge biasing/control. The newly constructed C-2W experimental device (also called "Norman") is the world's largest compact-toroid (CT) device, which has several key upgrades from the preceding C-2U device such as higher input power and longer pulse duration of the NBI system as well as installation of inner divertors with upgraded electrode biasing systems. Initial C-2W experiments have successfully demonstrated a robust FRC formation as well as its translation into the confinement vessel through the newly installed inner divertor with adequate guide magnetic field. They also produced dramatically improved initial FRC parameters with higher plasma temperatures (Te up to 300 eV; total electron and ion temperature >1.5 keV) and more trapped flux (up to ~15 mWb, based on rigid-rotor model) inside the FRC immediately after the merger of collided two CTs in the confinement section. As for effective edge biasing/control on FRC stabilization, a number of edge biasing schemes have been tried via open-fieldlines, in which concentric electrodes located in both inner and outer divertors as well as end-on plasma guns are electrically biased independently. As a result of effective outer-divertor electrode biasing alone, FRC plasma diamagnetism duration has reached up to ~9 ms which is equivalent to C-2U plasma duration. Magnetic field flaring/expansion in both inner and outer divertors plays an important role in creating a thermal insulation on open-field-lines to reduce a loss rate of electrons, which leads to improvement of the edge as well as core FRC confinement properties.
At anticipated high electron temperatures in ITER, the effects of electron thermal motion on Thomson scattering (TS), toroidal interferometer/polarimeter (TIP), and poloidal polarimeter (PoPola) diagnostics will be significant and must be accurately treated. The precision of the previous lowest order linear in τ = Te/mec(2) model may be insufficient; we present a more precise model with τ(2)-order corrections to satisfy the high accuracy required for ITER TIP and PoPola diagnostics. The linear model is extended from Maxwellian to a more general class of anisotropic electron distributions that allows us to take into account distortions caused by equilibrium current, ECRH, and RF current drive effects. The classical problem of the degree of polarization of incoherent Thomson scattered radiation is solved analytically exactly without any approximations for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. The results are discussed in the context of the possible use of the polarization properties of Thomson scattered light as a method of Te measurement relevant to ITER operational scenarios.
We present a derivation of the degree of polarization for incoherent Thomson scattering (TS) using Mueller matrix formalism. An exact analytic solution is obtained for spectrum-integrated matrix elements. The solution is valid for the full range of incident polarizations, scattering angles, and electron thermal motion from non-relativistic to ultra-relativistic. It is based on a newly developed theoretical model, a finite transit time (FTT) correction to previous theoretical work on TS polarization. The Mueller matrix elements are substantially different from previous calculations without the FTT correction, even to the lowest linear order in T e =m e c 2 (1. Mathematically, the derivation is a unique example of fully analytical integration of the 3D scattering operator over a relativistic Maxwellian distribution function; experimentally, the results have application to the use of the polarization properties of Thomson scattered light as a method of electron temperature measurement. The results can also be used as a reliable tool for benchmarking and verification of numerical codes for frequency resolved properties of TS polarization. Published by AIP Publishing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.