We present first results on polarization swings in optical emission of blazars obtained by RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events. A possible connection of polarization swing events with periods of high activity in gamma rays is investigated using the data set obtained during the first season of operation. It was found that the brightest gamma-ray flares tend to be located closer in time to rotation events, which may be an indication of two separate mechanisms responsible for the rotations. Blazars with detected rotations during non-rotating periods have significantly larger amplitude and faster variations of polarization angle than blazars without rotations. Our simulations show that the full set of observed rotations is not a likely outcome (probability ≤ 1.5 × 10 −2 ) of a random walk of the polarization vector simulated by a multicell model. Furthermore, it is highly unlikely (∼ 5 × 10 −5 ) that none of our rotations is physically connected with an increase in gamma-ray activity.
Abstract. We report the results of an unbiased survey for 6.7 GHz methanol maser emission of a ∼21 deg 2 strip of the Galactic plane carried out with the 32 m Toruń radio telescope. An area at 20• ≤ l ≤ 40• , |b| ≤ 0.• 52 was surveyed in an equilateral triangular grid with a sensitivity limit of about 1.6 Jy. We detected a total of 100 sources, 26 of which are new detections. All the new sources are of moderate intensity and their peak flux densities have median value of 6.5 Jy, i.e. about half that of previously known sources in the sample. About 80% of maser sources have IR counterpart candidates within a 1 radius but not all the IRAS counterparts of methanol masers have colours typical of ultracompact HII regions. An excess of masers unassociated with IR sources occurs at 30• because of incompleteness of IR catalogues due to strong confusion near the tangential region of the spiral arm. Our unbiased survey doubled the number of detections as compared to IRAS-based observations. Within the positional uncertainty of 1 about one third of the methanol sources have radio continuum counterparts at 5 GHz of a flux density greater than 2.5-10 mJy. The distribution of methanol sources appears to be consistent with a clustered mode of formation of massive stars.
We present average R-band optopolarimetric data, as well as variability parameters, from the first and second RoboPol observing season. We investigate whether gammaray-loud and gamma-ray-quiet blazars exhibit systematic differences in their optical polarization properties. We find that gamma-ray-loud blazars have a systematically higher polarization fraction (0.092) than gamma-ray-quiet blazars (0.031), with the hypothesis of the two samples being drawn from the same distribution of polarization fractions being rejected at the 3σ level. We have not found any evidence that this discrepancy is related to differences in the redshift distribution, rest-frame R-band luminosity density, or the source classification. The median polarization fraction versus synchrotron-peak-frequency plot shows an envelope implying that high synchrotronpeaked sources have a smaller range of median polarization fractions concentrated around lower values. Our gamma-ray-quiet sources show similar median polarization fractions although they are all low synchrotron-peaked. We also find that the randomness of the polarization angle depends on the synchrotron peak frequency. For high synchrotron-peaked sources it tends to concentrate around preferred directions while for low synchrotron-peaked sources it is more variable and less likely to have a preferred direction. We propose a scenario which mediates efficient particle acceleration in shocks and increases the helical B-field component immediately downstream of the shock.
We present measurements of rotations of the optical polarization of blazars during the second year of operation of RoboPol, a monitoring programme of an unbiased sample of gamma-ray bright blazars specially designed for effective detection of such events, and we analyse the large set of rotation events discovered in two years of observation. We investigate patterns of variability in the polarization parameters and total flux density during the rotation events and compare them to the behaviour in a non-rotating state. We have searched for possible correlations between average parameters of the polarization-plane rotations and average parameters of polarization, with the following results: (1) there is no statistical association of the rotations with contemporaneous optical flares; (2) the average fractional polarization during the rotations tends to be lower than that in a non-rotating state; (3) the average fractional polarization during rotations is correlated with the rotation rate of the polarization plane in the jet rest frame; (4) it is likely that distributions of amplitudes and durations of the rotations have physical upper bounds, so arbitrarily long rotations are not realised in nature.
We describe the data reduction pipeline and control system for the RoboPol project. The RoboPol project is monitoring the optical R-band magnitude and linear polarization of a large sample of active galactic nuclei that is dominated by blazars. The pipeline calibrates and reduces each exposure frame, producing a measurement of the magnitude and linear polarization of every source in the 13 × 13 field of view. The control system combines a dynamic scheduler, realtime data reduction, and telescope automation to allow high-efficiency unassisted observations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.