In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µmol m−2 s−1, ranging from 1.35 to 7.03 µmol m−2 s−1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.
[1] This paper presents measurements of the energy and water budgets of a tropical rain forest near Manaus, Brazil, in central Amazonia, collected between September 1995 and August 1996. Fluxes of sensible and latent heat were measured using a three-dimensional eddy covariance system mounted above the forest canopy. Using a new approach to analysis of eddy covariance data, we found that the measured fluxes increased significantly when turbulent transport on timescales of 1 to 4 hours was taken into account. With this new analysis, the measured turbulent fluxes almost balanced the incoming net radiation, giving increased confidence in the accuracy of the measured fluxes. Of the 5.56 GJ m À2 yr À1 of solar radiation supplied over the year, 11% were reflected, 15% were lost as net thermal emission, 27% were transported through sensible heat convection, 46% used in evapotranspiration, and 0.5% were used in net carbon fixation. Total annual evapotranspiration was calculated to be 1123 mm, accounting for 54% of total precipitation. Seasonality was an important influence: limited water availability during the dry season caused evapotranspiration to reduce by 50%. Total canopy conductance was linearly correlated to soil moisture content, with typical midday values ranging between 0.8 mol m À2 s À1 in the wet season and 0.3 mol m À2 s À1 in the dry season. Such seasonal behavior is likely to be prevalent in most tropical forest regions, and correct description of dry-season evapotranspiration will require accurate modeling of plant and soil hydraulic properties and knowledge of root distributions.
Leaf isoprene emission rates (F iso ) were studied in 2-year old trees of live oak (Quercus virginiana Mill.) during two drying-rewatering cycles. During the first drying-rewatering cycle, photosynthesis (A) and stomatal conductance (g s ) decreased by 92%(77%) and 91%(78%), respectively, while F iso remained essentially constant for 8 days of treatment. After 12 days under severe drought conditions, F iso was reduced by 64%(76%). Similar values were found during the second drying-rewatering cycle. During the recovery phase of both cycles, F iso recovered more quickly than A and g s . The lower drought sensitivity of F iso compared with that of A resulted in a higher percentage of fixed C lost as isoprene (C iso /C A ) as plants became more stressed, reaching peaks of 50% when A was almost zero. F iso showed a strong negative linear relationship with pre-dawn leaf water potential (c PD ) that could be a useful parameter to include in isoprene emission models to account for effects of drought stress on leaf F iso .
To further our understanding of the influence of global climate change on isoprene production we studied the effect of elevated [CO2] and vapour pressure deficit (VPD) on isoprene emission rates from leaves of Populus deltoides Bartr. during drought stress. Trees, grown inside three large bays with atmospheres containing 430, 800, or 1200 μmol mol–1 CO2 at the Biosphere 2 facility, were subjected to a period of drought during which VPD was manipulated, switching between low VPD (approximately 1 kPa) and high VPD (approximately 3 kPa) for several days. When trees were not water-stressed, elevated [CO2] inhibited isoprene emission and stimulated photosynthesis. Isoprene emission was less responsive to drought than photosynthesis. As water-stress increased, the inhibition of isoprene emission disappeared, probably as a result of stomatal closure and the resulting decreases in intercellular [CO2] (Ci). This assumption was supported by increased isoprene emission under high VPD. Drought and high VPD dramatically increased the proportion of assimilated carbon lost as isoprene. When measured at the same [CO2], leaves from trees grown at ambient [CO2] always had higher isoprene emission rates than the leaves of trees grown at elevated [CO2], demonstrating that CO2 inhibition is a long-term effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.