Two new families of cationic lipids were designed and synthesized for gene delivery, namely "lipophosphoramidates" and "lipophosphoguanidines", whose efficiency was noteworthy. The most efficient have an arsonium cation as the polar head, and the unsaturated lipidic tails (e.g. oleyl) gave the better in vivo results (mice lungs).
The safe and efficient delivery of nucleic acids into haematopoietic stem cells (HSCs) has a wide range of therapeutic applications. Although viruses are being used in most clinical trials owing to their high transfection efficacy, recent results highlight many concerns about their use. Synthetic transfection reagents, in contrast, have the advantage of being safe and easy to manage while their low transfection efficiency remains a hurdle that needs to be addressed before they can be widely used. Using information on transfection mechanisms, a new family of monocationic lipids called lipophosphoramides was synthesized. Their efficiency to transfer genes into haematopoietic cell lines (K562, Jurkat and Daudi) and CD34+ cells was assessed. In this study, we report that one of these new compounds, KLN-5, leads to more efficient transfection activity than one of our previously most efficient reagents (EG-308) and the commercially available monocationic lipids (DC-CHOL and DOTAP/DOPE) (P<0.05). In addition, only a slight toxicity related to the chemical structure of the new compounds is observed. Moreover, we show that KLN-5 can successfully carry the transgene into haematopoietic progenitor cells (CD34+). These results demonstrate that synthetic transfection reagents represent a viable alternative to viruses and could have potential practical utility in a number of applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.