The reflection spectra of CaWO, and CaMoO, single crystals were measured in the region between 4 and 25 eV. The measurements were performed using the electron synchrotron DESY as a light source. Both crystals show very similar spectral features. A relatively sharp, well separated low energy peak is accompanied on the high energy side by two groups of maxima, each group containing three broad main reflection bands which strongly overlap. Besides this, a less pronounced structure is observed over the whole spectral region.The experimental results are discussed in terms of semiempirical MO calculations of the anionic transition metal complexes.Die Reflexionsspektren von CaW0,-und CaMo0,-Einkristallen wurden zwischen 4 und 25 eV gemessen. Das Elektronensynchrotron DESY diente als Lichtquelle. Die Spektren der beiden Kristalle sind sehr Sihnlich. Ein relativ scharfer, wohl getrennter, niederenergetischer Peak wird zu kiirzeren Wellenlangen hin jeweils von zwei Bandengruppen gefolgt, die im wesentlichen aus drei sich stark uberlappenden Maxima aufgebaut sind. Daneben ist iiber den ganzen Spektralbereich eine weniger ausgepragte Struktur zu beobachten. Die experimentellen Ergebnisse werden mit Hilfe semiempirischer MO-Berechnungen der Anionenkomplexe diskutiert.
BACKGROUND: The recently developed magnetic resonance imaging–guided laser-induced thermal therapy offers a minimally invasive alternative to craniotomies performed for tumor resection or for amygdalohippocampectomy to control seizure disorders. Current laser-induced thermal therapies rely on linear stereotactic trajectories that mandate twist-drill entry into the skull and potentially long approaches traversing healthy brain. The use of robotically driven, telescoping, curved needles has the potential to reduce procedure invasiveness by tailoring trajectories to the curved shape of the ablated structure and by enabling access through natural orifices. OBJECTIVE: To investigate the feasibility of using a concentric tube robot to access the hippocampus through the foramen ovale to deliver thermal therapy and thereby provide a percutaneous treatment for epilepsy without drilling the skull. METHODS: The skull and both hippocampi were segmented from dual computed tomography/magnetic resonance image volumes for 10 patients. For each of the 20 hippocampi, a concentric tube robot was designed and optimized to traverse a trajectory from the foramen ovale to and through the hippocampus from head to tail. RESULTS: Across all 20 cases, the mean distances (errors) between the hippocampus medial axis and backbone of the needle were 0.55, 1.11, and 1.66 mm for the best, mean, and worst case, respectively. CONCLUSION: These curvilinear trajectories would provide accurate transforamenal delivery of an ablation probe to typical hippocampus volumes. This strategy has the potential both to decrease the invasiveness of the procedure and to increase the completeness of hippocampal ablation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.