We studied and improved gallium nitride (GaN) nanowire (NW) based light emitting diodes (LEDs). PIN nanodiodes with and without InGaN/GaN multiple quantum wells (MQWs) were grown by molecular beam epitaxy (MBE) under N-rich conditions on n-doped Si(111) substrates. Thanks to the coalescence of the p-type region of the NWs grown at low temperature, an autoplanarization process has been performed to obtain LEDs. Ni/Au top contacts have been deposited and patterned in order to bias the devices. A multiple-scale characterization approach has been carried out through the comparison of localized cathodoluminescence (CL) and macroscopic electroluminescence (EL) spectra. It shows that the EL emission of PIN-based LED at room temperature is related to defects in the p-type region of the NWs. In order to enhance the radiative recombinations of NW-based LEDs, we have first added InGaN/GaN MQWs, and secondly an electron blocking layer (EBL) has been inserted between the MQWs and the p-type zone of the NWs. The LED with EBL exhibited an emission band at 420 nm. The blue-shift of this emission band with increasing injected current is attributed to quantum confined Stark effect (QCSE) and evidences the radiative emission of InGaN/GaN MQWs. At 50 mA dc current, this improved NW-based LED emits about 500 times more light than the heterostructure without EBL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.