VW LMi is the tightest known quadruple system with 2+2 hierarchy. It consists of a W UMa-type eclipsing binary (P 12 = 0.47755 days) and another detached non-eclipsing binary (P 34 = 7.93 days) orbiting around a common center of mass in about P 1234 = 355 days. We present new observations of the system extending the time baseline to study long-term perturbations in the system and to improve orbital elements. The multi-dataset modeling of the system (4 radial-velocity curves for the components and the timing data) clearly showed an apsidal motion in the non-eclipsing binary at a rate of 4.6 degrees/yr, but no other perturbations. This is consistent with the nearly co-planarity of the outer, 355-day orbit, and the 7.93-day orbit of the non-eclipsing binary. Extensive N-body simulations enabled us to constrain the mutual inclination of the non-eclipsing binary and the outer orbits to j 34−1234 < 10 degrees.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.