Summary Background Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES). Methods In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly. Findings The cohort was recruited between Oct 22, 2014, and June 29, 2017, and clinical data were collected until March 31, 2018. After exclusion of fetuses with aneuploidy and CNVs, 610 fetuses with structural anomalies and 1202 matched parental samples (analysed as 596 fetus-parental trios, including two sets of twins, and 14 fetus-parent dyads) were analysed by WES. After bioinformatic filtering and prioritisation according to allele frequency and effect on protein and inheritance pattern, 321 genetic variants (representing 255 potential diagnoses) were selected as potentially pathogenic genetic variants (diagnostic genetic variants), and these variants were reviewed by a multidisciplinary clinical review panel. A diagnostic genetic variant was identified in 52 (8·5%; 95% CI 6·4–11·0) of 610 fetuses assessed and an additional 24 (3·9%) fetuses had a variant of uncertain significance that had potential clinical usefulness. Detection of diagnostic genetic variants enabled us to distinguish between syndromic and non-syndromic fetal anomalies (eg, congenital heart disease only vs a syndrome with congenital heart dis...
SummaryBackgroundFetal lower urinary tract obstruction (LUTO) is associated with high perinatal and long-term childhood mortality and morbidity. We aimed to assess the effectiveness of vesicoamniotic shunting for treatment of LUTO.MethodsIn a randomised trial in the UK, Ireland, and the Netherlands, women whose pregnancies with a male fetus were complicated by isolated LUTO were randomly assigned by a central telephone and web-based randomisation service to receive either the intervention (placement of vesicoamniotic shunt) or conservative management. Allocation could not be masked from clinicians or participants because of the invasive nature of the intervention. Diagnosis was by prenatal ultrasound. The primary outcome was survival of the baby to 28 days postnatally. All primary analyses were done on an intention-to-treat basis, but these results were compared with those of an as-treated analysis to investigate the effect of a fairly large proportion of crossovers. We used Bayesian methods to estimate the posterior probability distribution of the effectiveness of vesicoamniotic shunting at 28 days. The study is registered with the ISRCTN Register, number ISRCTN53328556.Findings31 women with singleton pregnancies complicated by LUTO were included in the trial and main analysis, with 16 allocated to the vesicoamniotic shunt group and 15 to the conservative management group. The study closed early because of poor recruitment. There were 12 livebirths in each group. In the vesicoamniotic shunt group one intrauterine death occurred and three pregnancies were terminated. In the conservative management group one intrauterine death occurred and two pregnancies were terminated. Of the 16 pregnancies randomly assigned to vesicoamniotic shunting, eight neonates survived to 28 days, compared with four from the 15 pregnancies assigned to conservative management (intention-to-treat relative risk [RR] 1·88, 95% CI 0·71–4·96; p=0·27). Analysis based on treatment received showed a larger effect (3·20, 1·06–9·62; p=0·03). All 12 deaths were caused by pulmonary hypoplasia in the early neonatal period. Sensitivity analysis in which non-treatment-related terminations of pregnancy were excluded made some slight changes to point estimates only. Bayesian analysis in which the trial data were combined with elicited priors from experts suggested an 86% probability that vesicoamniotic shunting increased survival at 28 days and a 25% probability that it had a large, clinically important effect (defined as a relative increase of 55% or more in the proportion of neonates who survived). There was substantial short-term and long-term morbidity in both groups, including poor renal function—only two babies (both in the shunt group) survived to 2 years with normal renal function. Seven complications occurred in six fetuses from the shunt group, including spontaneous ruptured membranes, shunt blockage, and dislodgement. These complications resulted in four pregnancy losses.InterpretationSurvival seemed to be higher in the fetuses receiving vesico...
Background Fetal structural anomalies, which are detected by ultrasonography, have a range of genetic causes, including chromosomal aneuploidy, copy number variations (CNVs; which are detectable by chromosomal microarrays), and pathogenic sequence variants in developmental genes. Testing for aneuploidy and CNVs is routine during the investigation of fetal structural anomalies, but there is little information on the clinical usefulness of genome-wide next-generation sequencing in the prenatal setting. We therefore aimed to evaluate the proportion of fetuses with structural abnormalities that had identifiable variants in genes associated with developmental disorders when assessed with whole-exome sequencing (WES).Methods In this prospective cohort study, two groups in Birmingham and London recruited patients from 34 fetal medicine units in England and Scotland. We used whole-exome sequencing (WES) to evaluate the presence of genetic variants in developmental disorder genes (diagnostic genetic variants) in a cohort of fetuses with structural anomalies and samples from their parents, after exclusion of aneuploidy and large CNVs. Women were eligible for inclusion if they were undergoing invasive testing for identified nuchal translucency or structural anomalies in their fetus, as detected by ultrasound after 11 weeks of gestation. The partners of these women also had to consent to participate. Sequencing results were interpreted with a targeted virtual gene panel for developmental disorders that comprised 1628 genes. Genetic results related to fetal structural anomaly phenotypes were then validated and reported postnatally. The primary endpoint, which was assessed in all fetuses, was the detection of diagnostic genetic variants considered to have caused the fetal developmental anomaly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.