The object of this research is fourth-order differential equations. The aim of the research is to study the analytical properties of the solutions of these differential equations. The general form of the considered equations is indicated, and also the choice of the research object is justified. Herein we studied fourth-order differential equations for which sets of resonances with all positive nontrivial resonances are absent. Besides, three of these equations satisfy the conditions of absence in the solutions of moving multivalued singular points. The solutions of the next three equations have movable special points of multivalued character. Moreover, we also investigated the analytical properties of one more fourth-order differential equation of another general form for which it is also possible to construct a two-parameter rational solution as there is a nontrivial negative resonance in the related set of resonances. The first integrals of the equations under study are found and their rational solutions are constructed from negative non-trivial resonances. The resonance method was used in this study. The obtained results can be used in the analytical theory of differential equations.
The object of this research is linear differential equations of the second order with regular singularities. We extend the concept of a regular singularity to linear partial differential equations. The general solution of a linear differential equation with a regular singularity is a linear combination of two linearly independent solutions, one of which in the general case contains a logarithmic singularity. The well-known Lamé equation, where the Weierstrass elliptic function is one of the coefficients, has only meromorphic solutions. We consider such linear differential equations of the second order with regular singularities, for which as a coefficient instead of the Weierstrass elliptic function we use functions that are the solutions to the first Painlevé or Korteweg – de Vries equations. These equations will be called Lamé-type equations. The question arises under what conditions the general solution of Lamé-type equations contains no logarithms. For this purpose, in the present paper, the solutions of Lamé-type equations are investigated and the conditions are found that make it possible to judge the presence or absence of logarithmic singularities in the solutions of the equations under study. An example of an equation with an irregular singularity having a solution with an logarithmic singularity is given, since the equation, defining it, has a multiple root.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.