Stars that interact with supermassive black holes (SMBHs) can either be completely or partially destroyed by tides. In a partial tidal disruption event (TDE) the high-density core of the star remains intact, and the low-density, outer envelope of the star is stripped and feeds a luminous accretion episode. The TDE AT2018fyk, with an inferred black hole mass of 10 7.7±0.4 M , experienced an extreme dimming event at X-ray (factor of >6000) and UV (factor ∼15) wavelengths ∼500-600 days after discovery. Here we report on the re-emergence of these emission components roughly 1200 days after discovery. We find that the source properties are similar to those of the pre-dimming accretion state, suggesting that the accretion flow was rejuvenated to a similar state. We propose that a repeated partial TDE, where the partially disrupted star is on a ∼ 1200 day orbit about the SMBH and is periodically stripped of mass during each pericenter passage, powers its unique lightcurve. This scenario provides a plausible explanation for AT2018fyk's overall properties, including the rapid dimming event and the rebrightening at late times. We also provide testable predictions for the behavior of the accretion flow in the future: if the second encounter was also a partial disruption then we predict another strong dimming event around day 1800 (August 2023), and a subsequent rebrightening around day 2400 (March 2025). This source provides strong evidence of the partial disruption of a star by a SMBH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.