Purpose: Epithelial-to-mesenchymal transition (EMT) is a process whereby cells acquire molecular alterations that facilitate cell motility and invasion. In preliminary studies, we observed that oxaliplatin-resistant (OxR) colorectal cancer (CRC) cells underwent morphologic changes suggestive of a migratory phenotype, leading us to hypothesize that OxR CRC cells undergo EMT. Experimental Design: The human CRC cell lines KM12L4 and HT29 were exposed to increasing doses of oxaliplatin to establish stable cell lines resistant to oxaliplatin. Migration and invasion were assessed by modified Boyden chamber assays. Morphologic and molecular changes characteristic of EMT were determined by immunofluorescence staining and Western blot analyses. Results: The OxR cells showed phenotypic changes consistent with EMT: spindle-cell shape, loss of polarity, intercellular separation, and pseudopodia formation. KM12L4 and HT29 OxR cells exhibited an f8-to 15-fold increase in migrating and invading cells, respectively (P < 0.005 for both). Immunofluorescence staining of OxR cells revealed translocation of E-cadherin and h-catenin from their usual membrane-bound complex to the cytoplasm and nucleus, respectively. The OxR cells also had decreased expression of the epithelial adhesion molecules E-cadherin and plakoglobin and an increase in the mesenchymal marker vimentin. The KM12L4 OxR cells exhibited increased nuclear expression of Snail, an EMT-regulatory transcription factor, whereas the HT29 OxR cells exhibited an increase in nuclear expression of the EMT-associated transcription factor nuclear factor nB. Conclusion: We hypothesize that induction of EMT may contribute to the decreased efficacy of therapy in chemoresistant CRC, as the tumor cells switch from a proliferative to invasive phenotype. Further understanding of the mechanisms of chemoresistance in CRC will enable improvements in chemotherapy for metastatic disease.Oxaliplatin is a third-generation platinum compound and is the first platinum-based compound to show efficacy in the treatment of colorectal cancer (CRC; ref. 1). Its use in combination with 5-fluorouracil and leucovorin (FOLFOX) for metastatic CRC has led to response rates >50% and median survival approaching 2 years (2, 3). FOLFOX has also been found to be very effective in the adjuvant setting, leading to an increase in the number of patients who are cured after surgical resection when compared with the use of 5-fluorouracil and leucovorin alone (4). Despite these impressive accomplishments, virtually all metastatic CRC eventually become resistant to oxaliplatin, with a median time to progression of f8 months (5). Hypotheses on the mechanisms of oxaliplatin resistance include defects in oxaliplatin uptake, impaired DNA adduct formation, and increased expression of a copper efflux transporter (6 -9).Epithelial-to-mesenchymal transition (EMT) is a process initially observed in embryonic development in which cells lose epithelial characteristics and gain mesenchymal properties to increase motility and...
Our laboratory has shown that vascular endothelial growth factor receptor-1 (VEGFR-1) expression on human pancreatic cancer cell lines mediates cell migration and invasion. Because epithelial to mesenchymal transition (EMT) also plays a role in cell motility by altering the cell phenotype and morphology, we hypothesized that VEGFR-1 activation induces molecular alterations that mediate EMT. Our treatment of the human pancreatic cancer cell line L3.6pl with the VEGFR-1 ligands VEGF-A and VEGF-B led to morphologic changes characteristic of EMT, including loss of polarity, increased intercellular separation, and the presence of pseudopodia. Immunofluorescent staining with antibodies to E-cadherin and B-catenin showed that VEGFR-1 activation led to translocation of E-cadherin and B-catenin from their usual cell membranebound location to the cytoplasm and nucleus, respectively. Western blotting showed that VEGFR-1 activation led to decreased expression of the epithelial markers E-cadherin and plakoglobin, increased expression of the mesenchymal markers vimentin and N-cadherin, and increased nuclear expression of B-catenin. Pretreatment of tumor cells with a VEGFR-1 blocking antibody inhibited the VEGFR-1-induced immunohistochemical and molecular changes in E-cadherin. VEGFR-1 activation led to an increase in expression of the EMT-associated transcription factors Snail, Twist, and Slug. The changes mediated by VEGFR-1 in this pancreatic carcinoma cell line are highly consistent with the changes characteristic of EMT. Given our previous finding of VEGFR-1-mediated tumor cell invasion and migration in pancreatic carcinoma cells, we hypothesize that VEGFR-1 plays a role in tumor progression in pancreatic cancer through the induction of EMT. (Cancer Res 2006; 66(1): 46-51)
Pancreatic carcinomas express high levels of urokinase-type plasminogen activator (uPA) and its receptor (uPAR), both of which mediate cell migration and invasion. We investigated the hypotheses that (a) insulin-like growth factor-I (IGF-I)-and hepatocyte growth factor (HGF)-mediated migration and invasion of human pancreatic carcinoma cells require uPA and uPAR function and (b) inhibition of uPAR inhibits tumor growth, retroperitoneal invasion, and hepatic metastasis of human pancreatic carcinomas in mice. Using transwell assays, we investigated the effect of IGF-I and HGF on L3.6pl migration and invasion. We measured the induction of uPA and uPAR following treatment of cells with IGF-I and HGF using immunoprecipitation and Western blot analysis. The importance of uPA and uPAR on L3.6pl cell migration and invasion was studied by inhibiting their activities with amiloride and antibodies before cytokine treatment. In an orthotopic mouse model of human pancreatic carcinoma, we evaluated the effect of anti-uPAR monoclonal antibodies with and without gemcitabine on primary tumor growth, retroperitoneal invasion, and hepatic metastasis. IGF-I and HGF mediated cell migration and invasion in L3.6pl cells. In addition, IGF-I and HGF induced uPA and uPAR expression in L3.6pl cells. In vitro, blockade of uPA and uPAR activity inhibited IGF-I-and HGF-mediated cell migration and invasion. Treatment of mice with anti-uPAR monoclonal antibody significantly decreased pancreatic tumor growth and hepatic metastasis and completely inhibited retroperitoneal invasion. Our study shows the importance of the uPA/ uPAR system in pancreatic carcinoma cell migration and invasion. These findings suggest that uPAR is a potential target for therapy in patients with pancreatic cancer. (Cancer Res 2005; 65(17): 7775-81)
Tyrosine kinase receptors mediate many critical cellular functions that contribute to tumor progression and metastasis and thus are potential targets for molecular-based cancer therapy. As has been found for many receptor tyrosine kinases, RON (recepteur d'origine nantais) and its ligand, macrophage-stimulating protein, have recently been implicated in the progression and metastasis of tumors. In in vitro experiments using colon and breast cancer cell lines, overexpression of RON led to increased invasion and migration of cancer cells and prevented apoptosis and anoikis. In addition, transgenic mice engineered to overexpress RON in the lung epithelium developed multiple pulmonary tumors, suggesting a role for RON in tumorigenesis. In human cancer specimens, increased RON expression has been demonstrated in colon, breast, ovarian, and lung tumors. Therefore, therapies designed to inhibit RON activation may hinder critical tumor survival mechanisms and play a role in the treatment of advanced disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.