Abstract-This paper studies the potential impact of using space-time information in the mitigation of the Non-Line-OfSight condition in mobile subscriber's positioning systems. First of all, this work discusses the positioning problem based on measures of Time Differences Of Arrival departing from a more exact characterization of the signal statistics and including some geometrical restrictions to achieve an improved accurate. Furthermore, a novel approach that integrates signal propagation characteristics to information provided by a suitable timing estimation model based on Cramer Rao Bound for a Rayleigh-fading channel, when antenna arrays are used at the receiver and when a set of channel vector estimates are available, has been introduced to study the positive benefits of space-time diversity. These approaches are evaluated within a realistic simulation scenario.
This paper computes the Cramer-Rao bounds for the time of arrival estimation in a multipath Rice and Rayleigh fading scenario, conditioned to the previous estimation of a set of propagation channels, since these channel estimates (correlation between received signal and the pilot sequence) are sufficient statistics in the estimation of delays. Furthermore, channel estimation is a constitutive block in receivers, so we can take advantage of this information to improve timing estimation by using time and space diversity. The received signal is modeled as coming from a scattering environment that disperses the signal both in space and time. Spatial scattering is modeled with a Gaussian distribution and temporal dispersion as an exponential random variable. The impact of the sampling rate, the roll-off factor, the spatial and temporal correlation among channel estimates, the number of channel estimates, and the use of multiple sensors in the antenna at the receiver is studied and related to the mobile subscriber positioning issue. To our knowledge, this model is the only one of its kind as a result of the relationship between the space-time diversity and the accuracy of the timing estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.