We developed a somewhat novel fractional-order calculus workbench as a certain generalization of the Khalil’s conformable derivative. Although every integer-order derivate can naturally be consistent with fully physical-sense problem’s quotation, this is not the standard scenario of the non-integer-order derivatives, even aiming physics systems’s modelling, solely.We revisited a particular case of the generalized conformable fractional derivative and derived a differential operator, whose properties overcome those of the integer-order derivatives, though preserving its clue advantages.Worthwhile noting, that two-fractional indexes differential operator we are dealing, departs from the single-fractional index framework, which typifies the generalized conformable fractional derivative. This distinction leads to proper mathematical tools, useful in generalizing widely accepted results, with potential applications to fundamental Physics within fractional order calculus. The later seems to be especially appropriate for exercising the Sturm-Liouville eigenvalue problem, as well as the Euler-Lagrange equation and to clarify several operator algebra matters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.