The activities of single proprioceptive fibres were recorded from the lateral peroneal nerve using transcutaneously implanted tungsten microelectrodes. Unitary discharges originating from muscle spindle primary and secondary endings and Golgi tendon organs were identified by means of various physiological tests. The sensitivity of proprioceptors to mechanical vibrations with a constant low amplitude (0.2-0.5 mm) applied at various frequencies to the tendon of the receptor-bearing muscle was studied. Muscle spindle primary endings (Ia fibres) were found to be the most sensitive to this mechanical stimulus. In some cases their discharge could be driven in a one-to-one manner up to 180 Hz. Most of them also fired harmonically with the vibration up to 80 Hz and then discharged in a subharmonic manner (1/2-1/3) with increasing vibration frequencies. Muscle spindle secondary endings (II fibres) and Golgi tendon organs (Ib fibres) were found to be either insensitive or only slightly sensitive to tendon vibration in relaxed muscles. The effects of tendon vibration on muscle spindle sensory endings response to muscle lengthening and shortening induced by imposed constant velocity or sinusoidal movements of the ankle joint were studied. Modulation of the proprioceptive discharge frequency coding the various joint movement parameters was either completely or partly masked by the receptor response to vibration, depending on the vibration frequency. Moreover, vibrations combined with sinusoidal joint movements elicited quantitatively erroneous proprioceptive messages concerning the movement parameters (amplitude, velocity). The sensitivity of the Golgi tendon organs to vibration increased greatly when the receptor-bearing muscle was tonically contracted. These data confirm that vibration is able to preferentially activate the Ia afferent channel, even when the vibration amplitude is low. They define the frequency sensitivity of the muscle spindle primary and secondary endings and the Golgi tendon organs. They also show that the physiological messages triggered by ongoing motor activities undergo a series of changes during the exposure of muscles to vibration.
SUMMARY1. Experiments were performed on awake human subjects in which single nerve fibre activity was recorded in the lateral peroneal nerve using tungsten micro-electrodes as described by Hagbarth & Vallbo (1967, 1968a).2. The discharge of twelve single efferent fibres innervating the tibialis anterior muscle (t.a.) or the extensor digitorum longus muscle (e.d.l.) was recorded. On the basis of their functional activity, six fibres were identified as skeletomotor and six as fusimotor fibres.3. Skeletomotor fibres, which were completely silent in relaxed subjects, discharged when subjects performed voluntary isometric or isotonic contractions, they also fired during Jendrassik's manoeuvre and tonic vibration reflex (t.v.r.) induced by mechanical vibration applied to the distal muscle tendon.4. Units considered as fusimotor fibres were generally spontaneously active with some fluctuation in the discharge frequency. Various tests used to identify afferent fibres elicited no response of these fibres (nor of the skeletomotor fibres). Efferent fibres were considered as fusimotor because their discharges were uncorrelated with any activation of extrafusal muscle fibres. Several means were used to detect activation of extrafusal fibres: surface electromyogram (e.m.g.) electrodes, tungsten electrodes deeply implanted in the muscle and especially the use of a high-sensitivity tension transducer (01 mN) placed on muscle tendons.5. The activity in fusimotor fibres could be either elicited or modulated under the following conditions: clenching of the fists, pinna twisting, mental computation, voluntary isometric contraction, passive phasic stretch of the muscle, environmental disturbances, subject laughing, the sound of hand clapping, and subject listening to manoeuvre instructions. Moreover, during spontaneous fusimotor fibre activity the subject was able to voluntarily stop the unit discharge.6. The results are compared to those obtained in animal studies and discussed with reference to the notion of a-y linkage, static and dynamic y-motoneurone activities, t Correspondence and offprint requests to: Dr J. P. Vedel, CNRS-INP4, 31, chemin Joseph
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.