The mass accretion rate,Ṁ acc , is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M 2.0M ) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-Shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, L acc , increases with the stellar luminosity, L , with an overall slope of ∼1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L ≈0.1L , where L acc is always lower than 0.01 L . We argue that the L acc -L slope is not due to observational biases, but is a true property of the Lupus YSOs. The logṀ acclogM correlation shows a statistically significant evidence of a break, with a steeper relation for M 0.2 M and a flatter slope for higher masses. The bimodality of theṀ acc -M relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. The sample studied here more than doubles the number of YSOs with homogeneously and simultaneously determined L acc and luminosity, L line , of many permitted emission lines. Hence, we also refined the empirical relationships between L acc and L line on a more solid statistical basis.
We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ∼0.03 to ∼1.2 M , but mostly with 0.1 M < M < 0.5 M . Our aim is twofold: firstly, to analyse the relationship between excess-continuum and line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (L acc ), and in turn the accretion rate (Ṁ acc ), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (L line ) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ∼330 nm to 2500 nm. The luminosity of all the lines is well correlated with L acc . We provide empirical relationships between L acc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to L acc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring L acc andṀ acc yield significantly different results: Hα line profile modelling may underestimateṀ acc by 0.6 to 0.8 dex with respect toṀ acc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships betweenṀ acc and other YSOs properties reported in the literature. We derivedṀ acc in the range 2 × 10 −12 -4 × 10 −8 M yr −1 and conclude thatṀ acc ∝ M 1.8(±0.2) , with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude inṀ acc , confirming previous suggestions that the geometry of the accretion flow controls the rate at which the disc material accretes onto the central star.
Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution (∼ 0.12 ) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between
We present a high-resolution (∼ 0. 12, ∼ 16 au, mean sensitivity of 50 µJy beam −1 at 225 GHz) snapshot survey of 32 protoplanetary disks around young stars with spectral type earlier than M3 in the Taurus star-forming region using Atacama Large Millimeter Array (ALMA). This sample includes most mid-infrared excess members that were not previously imaged at high spatial resolution, excluding close binaries and highly extincted objects, thereby providing a more representative look at disk properties at 1-2 Myr. Our 1.3 mm continuum maps reveal 12 disks with prominent dust gaps and rings, 2 of which are around primary stars in wide binaries, and 20 disks with no resolved features at the observed resolution (hereafter smooth disks), 8 of which are around the primary star in wide binaries. The smooth disks were classified based on their lack of resolved substructures, but their most prominent property is that they are all compact with small effective emission radii (R eff,95% 50 au). In contrast, all disks with R eff,95% of at least 55 au in our sample show detectable substructures. Nevertheless, their inner emission cores (inside the resolved gaps) have similar peak brightness, power law profiles, and transition radii to the compact smooth disks, so the primary difference between these two categories is the lack of outer substructures in the latter. These compact disks may lose their outer disk through arXiv:1906.10809v1 [astro-ph.SR] 26 Jun 2019 2 Long et al.fast radial drift without dust trapping, or they might be born with small sizes. The compact dust disks, as well as the inner disk cores of extended ring disks, that look smooth at the current resolution will likely show small-scale or low-contrast substructures at higher resolution. The correlation between disk size and disk luminosity correlation demonstrates that some of the compact disks are optically thick at millimeter wavelengths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.