The c2d Spitzer Legacy project obtained images and photometry with both IRAC and MIPS instruments for five large, nearby molecular clouds. Three of the clouds were also mapped in dust continuum emission at 1.1 mm, and optical spectroscopy has been obtained for some clouds. This paper combines information drawn from studies of individual clouds into a combined and updated statistical analysis of star formation rates and efficiencies, numbers and lifetimes for SED classes, and clustering properties. Current star formation efficiencies range from 3% to 6%; if star formation continues at current rates for 10 Myr, efficiencies could reach 15% to 30%. Star formation rates and rates per unit area vary from cloud to cloud; taken together, the five clouds are producing about 260 M ⊙ of stars per Myr. The star formation surface density is more than an order of magnitude larger than would be predicted from the Kennicutt relation used in extragalactic studies, reflecting the fact that those relations apply to larger scales, where more diffuse matter is included in the gas surface density. Measured against the dense gas probed by the maps of dust continuum emission, the efficiencies are much higher, with stellar masses similar to masses of dense gas, and the current stock of dense cores would be exhausted in 1.8 Myr on average. Nonetheless, star formation is still slow compared to that expected in a free fall time, even in the dense cores. The derived lifetime for the Class I phase is 0.54 Myr, considerably longer than some estimates. Similarly, the lifetime for the Class 0 SED class, 0.16 Myr, with the notable exception of the Ophiuchus cloud, is longer than early estimates. If photometry is corrected for estimated extinction before calculating class indicators, the lifetimes drop to 0.44 Myr for Class I and to 0.10 for Class 0. These lifetimes assume a continuous flow through the Class II phase and should be considered median lifetimes or half-lives. Star formation is highly concentrated to regions of high extinction, and the youngest objects are very strongly associated with dense cores. The great majority (90%) of young stars lie within loose clusters with at least 35 members and a stellar density of 1 M ⊙ pc −3 . Accretion at the sound speed from an isothermal sphere over the lifetime derived for the Class I phase could build a star of about 0.25 M ⊙ , given an efficiency of 0.3. Building larger mass stars by using higher mass accretion rates could be problematic, as our data confirm and aggravate the "luminosity problem" for protostars. At a given T bol , the values for L bol are mostly less than predicted by standard infall models and scatter over several orders of magnitude. These results strongly suggest that accretion is time variable, with prolonged periods of very low accretion. Based on a very simple model and this sample of sources, half the mass of a star would be accreted during only 7% of the Class I lifetime, as represented by the eight most luminous objects.
The mass accretion rate,Ṁ acc , is a key quantity for the understanding of the physical processes governing the evolution of accretion discs around young low-mass (M 2.0M ) stars and substellar objects (YSOs). We present here the results of a study of the stellar and accretion properties of the (almost) complete sample of class II and transitional YSOs in the Lupus I, II, III and IV clouds, based on spectroscopic data acquired with the VLT/X-Shooter spectrograph. Our study combines the dataset from our previous work with new observations of 55 additional objects. We have investigated 92 YSO candidates in total, 11 of which have been definitely identified with giant stars unrelated to Lupus. The stellar and accretion properties of the 81 bona fide YSOs, which represent more than 90% of the whole class II and transition disc YSO population in the aforementioned Lupus clouds, have been homogeneously and self-consistently derived, allowing for an unbiased study of accretion and its relationship with stellar parameters. The accretion luminosity, L acc , increases with the stellar luminosity, L , with an overall slope of ∼1.6, similar but with a smaller scatter than in previous studies. There is a significant lack of strong accretors below L ≈0.1L , where L acc is always lower than 0.01 L . We argue that the L acc -L slope is not due to observational biases, but is a true property of the Lupus YSOs. The logṀ acclogM correlation shows a statistically significant evidence of a break, with a steeper relation for M 0.2 M and a flatter slope for higher masses. The bimodality of theṀ acc -M relation is confirmed with four different evolutionary models used to derive the stellar mass. The bimodal behaviour of the observed relationship supports the importance of modelling self-gravity in the early evolution of the more massive discs, but other processes, such as photo-evaporation and planet formation during the YSO's lifetime, may also lead to disc dispersal on different timescales depending on the stellar mass. The sample studied here more than doubles the number of YSOs with homogeneously and simultaneously determined L acc and luminosity, L line , of many permitted emission lines. Hence, we also refined the empirical relationships between L acc and L line on a more solid statistical basis.
We present VLT/X-shooter observations of a sample of 36 accreting low-mass stellar and substellar objects (YSOs) in the Lupus star-forming region, spanning a range in mass from ∼0.03 to ∼1.2 M , but mostly with 0.1 M < M < 0.5 M . Our aim is twofold: firstly, to analyse the relationship between excess-continuum and line emission accretion diagnostics, and, secondly, to investigate the accretion properties in terms of the physical properties of the central object. The accretion luminosity (L acc ), and in turn the accretion rate (Ṁ acc ), was derived by modelling the excess emission from the UV to the near-infrared as the continuum emission of a slab of hydrogen. We computed the flux and luminosity (L line ) of many emission lines of H , He , and Ca ii, observed simultaneously in the range from ∼330 nm to 2500 nm. The luminosity of all the lines is well correlated with L acc . We provide empirical relationships between L acc and the luminosity of 39 emission lines, which have a lower dispersion than relationships previously reported in the literature. Our measurements extend the Paβ and Brγ relationships to L acc values about two orders of magnitude lower than those reported in previous studies. We confirm that different methodologies of measuring L acc andṀ acc yield significantly different results: Hα line profile modelling may underestimateṀ acc by 0.6 to 0.8 dex with respect toṀ acc derived from continuum-excess measures. These differences may explain the probably spurious bi-modal relationships betweenṀ acc and other YSOs properties reported in the literature. We derivedṀ acc in the range 2 × 10 −12 -4 × 10 −8 M yr −1 and conclude thatṀ acc ∝ M 1.8(±0.2) , with a dispersion lower by a factor of about 2 than in previous studies. A number of properties indicate that the physical conditions of the accreting gas are similar over more than 5 orders of magnitude inṀ acc , confirming previous suggestions that the geometry of the accretion flow controls the rate at which the disc material accretes onto the central star.
We present c2d Spitzer/IRAC observations of the Lupus I, III and IV dark clouds and discuss them in combination with optical and near-infrared and c2d MIPS data. With the Spitzer data, the new sample contains 159 stars, 4 times larger than the previous one. It is dominated by low-and very-low mass stars and it is complete down to M ≈ 0.1M ⊙ . We find 30-40% binaries with separations between 100 to 2000 AU with no apparent effect in the disk properties of the members. A large majority of the objects are Class II or Class III objects, with only 20 (12%) of Class I or Flat spectrum sources. The disk sample is complete down to "debris"-like systems in stars as small as M ≈ 0.2 M ⊙ and includes sub-stellar objects with larger IR excesses. The disk fraction in Lupus is 70 -80%, consistent with an age of 1 -2 Myr. However, the young population contains 20% optically thick accretion disks and 40% relatively less flared disks. A growing variety of inner disk structures is found for larger inner disk clearings for
We present high-quality, medium-resolution X-shooter/VLT spectra in the range 300−2500 nm for a sample of 12 very low mass stars in the σ Orionis cluster. The sample includes eight stars with evidence of disks from Spitzer and four without disks, with masses ranging from 0.08 to 0.3 M . The aim of this first paper is to investigate the reliability of the many accretion tracers currently used to measure the mass accretion rate in low-mass young stars and the accuracy of the correlations between these secondary tracers (mainly accretion line luminosities) found in the literature. We use our spectra to measure the accretion luminosity from the continuum excess emission in the UV and visual; the derived mass accretion rates range from 10 −9 M yr −1 down to 5 × 10 −11 M yr −1 , allowing us to investigate the behavior of the accretion-driven emission lines in very low mass accretion rate regimes. We compute the luminosity of ten accretion-driven emission lines from the UV to the near-IR, which are all obtained simultaneously. In general, most of the secondary tracers correlate well with the accretion luminosity derived from the continuum excess emission. We recompute the relationships between the accretion luminosities and the line luminosities, and we confirm the validity of the correlations given in the literature, with the possible exception of Hα. Metallic lines, such as the CaII IR triplet or the Na I line at 589.3 nm, show a larger dispersion. When looking at individual objects, we find that the hydrogen recombination lines, from the UV to the near-IR, give good and consistent measurements of L acc that often better agree than the uncertainties introduced by the adopted correlations. The average L acc derived from several hydrogen lines, measured simultaneously, have a much reduced error. This suggests that some of the spread in the literature correlations may be due to the use of nonsimultaneous observations of lines and continuum. Three stars in our sample deviate from this behavior, and we discuss them individually.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.