In this paper, a simple manufacturing process for Mn-Zn ferrite powder is described, which can be considered as a modified powder injection moulding process. This method uses acrylic thermosetting resin as the binder. The moulding is carried out at room temperature by directly pouring the slurry (resin and ferrite) in the mould. The mixture is heated at the curing temperature (70uC) of resin to permit polymerisation and cross linking of the polymer. In order to optimise the moulding step, different volume fractions of powder with resin were mixed. The optimal powder load was 50 vol.-%. The best thermal debinding cycle was determined by means of thermogravimetric analysis. Sintering was performed according to oxygen partial pressure equilibrium curves at 1330uC for 3 h. Magnetic properties were compared with those obtained by uniaxial compacted parts.
Keywords: PIM Ni-Zn ferrites Mechanical properties Magnetic propertiesNowadays, the electronic industry demands small and complex parts as a consequence of the miniaturization of electronic devices. Powder injection moulding (PIM) is an emerging technique for the manufacturing of magnetic ceramics. In this paper, we analyze the sintering process, between 900 °C and 1300 °C, of Ni-Zn ferrites prepared by PIM. In particular, the densification behaviour, microstructure and mechanical properties of samples with toroidal and bar geometry were analyzed at different temperatures. Additionally, the magnetic behaviour (complex permeability and magnetic losses factor) of these compacts was compared with that of samples prepared by conventional powder compaction. Finally, the mechanical behaviour (elastic modulus, flexure strength and fracture toughness) was analyzed as a function of the powder loading of feedstock. The final microstructure of prepared samples was correlated with the macroscopic behaviour. A good agreement was established between the densities and population of defects found in the materials depending on the sintering conditions. In general, the final mechanical and magnetic properties of PIM samples were enhanced relative those obtained by uniaxial compaction.
ECO-CLIP has developed a novel recycled 40wt% short CF/LMPAEK material from factory scrap that has been used to manufacture aircraft structural parts using injection molding (IM), the conventional manufacturing process, and fussed granulated fabrication (FGF) as an alternative one.
In this sense, a technical study of the material processability has been made for FGF. The most important results are presented in this work, such as fiber breakage, carbon fiber percentage after and before processing, thermal behavior and thermal induce history, and mechanical properties such as compression, tensile and flexural behavior Three different nozzle diameters (0.8, 1.2, and 1.5mm) were used to ensure processability, mechanical requirements, and physical performance. Carrying out a direct comparison with the results achieved by IM.
Other PAEKs have been processed by FGF or traditional fused filament fabrication (FFF) for comparative purposes.
Out-of-Autoclave technologies are emerging as cost-effective alternatives to autoclave cure prepreg. However, their implementation in aerospace industry is still presenting many challenges. A common problem is the shape distortions that results in geometry mismatches with the tool. A way to avoid this and ensure a good final quality part is identifying the mechanisms that induce these deformations and optimize the manufacturing process of each component with the aim of reducing the production of faulty parts. The main objective of ELADINE project is to provide a method for shape distortions prediction on composite integral structures using an experimental-numerical approach. Different manufacturing parameters were monitored using Fiber Bragg Grating (FBG) sensors and DC-dielectric (DC) sensors and the resulting part geometry was examined by means of 3D coordinate analysis. The study performed for LRI (Liquid Resin Infusion) manufactured parts and the scenarios considered for the calibration of a Finite Element Method (FEM) based simulation tool are presented in the article. The resulting model will be implemented in a sub-scale demonstrator and, eventually, in a full 7-meter composite wing-box.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.