Experimental data from different testing methodologies on different compacted clayey soils, with dominant bimodal pore size distribution, are presented and analysed, to\ud
provide a comprehensive picture of the evolution of the aggregated fabric along hydraulic and mechanical paths. Fabric changes are analysed both from the porous network viewpoint, by means of careful mercury intrusion porosimetry investigation, and from the soil skeleton viewpoint, by quantifying swelling and shrinkage of the\ud
aggregates in an environmental scanning electron microscopy study. The consequences of the aggregated fabric evolution on the water retention properties of compacted\ud
soils are analysed and discussed. A new model for water retention domain is proposed, which introduces a dependence\ud
of the intra-aggregate pore volume on water content.\ud
The model succeeds in tracking correctly the\ud
evolution of the hydraulic state of the different soils investigated along generalised hydromechanical paths.\ud
The proposed approach brings to light coupling between intra-aggregate and inter-aggregate pores in the retention properties of compacted clayey soils. Dependence of the\ud
air entry and the air occlusion values on swelling and shrinking of aggregates, besides void ratio, is introduced and discussed.Peer ReviewedPostprint (published version
With the advent of modern microstructural testing techniques and microstructure based constitutive models the microstructural characterisation of soils is gaining prominence. This paper reviews the history of microstructure investigation in unsaturated soils and discusses the engineering significance of this research to date. After a brief overview of the main microstructural techniques, the paper focuses on the evaluation of the current state of use and the development of two widely used techniques to study the microstructure of partially saturated soils, namely mercury intrusion porosimetry and the environmental scanning electron microscopy. The details of these techniques, their advantages and limitations, are first covered, followed by the presentation of selected test results. These results highlight the use of these techniques for understanding different hydro-mechanical behavioural features observed at macroscopic scale. Specifically, the paper shows the use of these techniques to explore the fundamental properties of water retention characteristics, water permeability, and micro and macrostructural interactions along different hydro-mechanical paths.
Granular mixtures made of high-density pellets of bentonite are being evaluated as an alternative buffer material for waste isolation. Ease of handling is an often-mentioned advantage. The paper described the experimental program performed to characterize the hydromechanical behaviour of compacted pellet's mixtures used in the engineered barrier (EB) experiment.The material tested in the laboratory was based in the pellet's mixtures actually used for the emplacement of the EB in situ experiment. Grain size distribution was adjusted to a maximum pellet size compatible with the specimen's dimensions. Dry densities of statically compacted specimens varied in most of the cases in the range: 1.3-1.5 Mg/m 3 . Pellets had a very high dry density, close to 2 Mg/m 3 . The outstanding characteristic of these mixtures is its discontinuous porosity. Pore sizes of the compacted pellets vary around 10 nm. However the inter-pellet size of the pores is four to five orders of magnitude higher. This double porosity and the highly expansive nature of the pellets controlled all the hydraulic and mechanical properties of the mixture.Tests performed include infiltration tests using different water injection rates and mechanisms of water transfer (in liquid and vapour phases), suction controlled oedometer tests and swelling pressure tests. The interpretation of some of the tests performed required backanalysis procedures using a hydro-mechanical (HM) computer code.Material response was studied within the framework of the elastoplastic constitutive model proposed by Alonso et al. [Alonso, E.E., Gens, A., Josa, A., 1990. A constitutive model for partially saturated soils. Géotechnique 40 (3), 405-430] (Barcelona Basic Model, BBM). Parameters for the model were identified and also a set of hydraulic laws necessary to perform coupled HM analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.