Correct assessment of bradykinesia is a key element in the diagnosis and monitoring of Parkinson's disease. Its evaluation is based on a careful assessment of symptoms and it is quantified using rating scales, where the Movement Disorders Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS) is the gold standard. Regardless of their importance, the bradykinesia-related items show low agreement between different evaluators. In this study, we design an applicable tool that provides an objective quantification of bradykinesia and that evaluates all characteristics described in the MDS-UPDRS. Twenty-five patients with Parkinson's disease performed three of the five bradykinesia-related items of the MDS-UPDRS. Their movements were assessed by four evaluators and were recorded with a nine degrees-of-freedom sensor. Sensor fusion was employed to obtain a 3-D representation of movements. Based on the resulting signals, a set of features related to the characteristics described in the MDS-UPDRS was defined. Feature selection methods were employed to determine the most important features to quantify bradykinesia. The features selected were used to train support vector machine classifiers to obtain an automatic score of the movements of each patient. The best results were obtained when seven features were included in the classifiers. The classification errors for finger tapping, diadochokinesis and toe tapping were 15-16.5%, 9.3-9.8%, and 18.2-20.2% smaller than the average interrater scoring error, respectively. The introduction of objective scoring in the assessment of bradykinesia might eliminate inconsistencies within evaluators and interrater assessment disagreements and might improve the monitoring of movement disorders.
Parkinson's disease (PD) leads to impairment in multiple cognitive domains. Micrographia is a relatively early PD sign of visuomotor dysfunction, characterized by a global reduction in writing size and a decrement in size during writing. Here we aimed to investigate the effect of withdrawal of visual feedback on writing size in patients with PD. Twenty-five patients with non-tremor-dominant PD without cognitive dysfunction and twenty-five age-matched controls had to write a standard sentence with and without visual feedback. We assessed the effect of withdrawal of visual feedback by measuring vertical word size (i), horizontal length of the sentence (ii), and the summed horizontal word length without interspacing (iii), comparing patients with controls. In both patients and controls, writing was significantly larger without visual feedback. This enlargement did not significantly differ between the groups. Smaller handwriting significantly correlated with increased disease severity. Contrary to previous observations that withdrawal of visual feedback caused increased writing size in specifically PD, we did not find differences between patients and controls. Both groups wrote larger without visual feedback, which adds insight in general neuronal mechanisms underlying the balance between feed-forward and feedback in visuomotor control, mechanisms that also hold for grasping movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.