Methyl tertiary butyl ether (MTBE) is a gasoline additive associated with groundwater pollution at gas station sites. Previous research on poplar trees in hydroponic systems suggests that phytovolatilization is an effective mechanism for phytoremediation of MTBE (Rubin and Ramaswami, 2001), but the potential for microbial degradation of MTBE in the rhizosphere of trees had not been assessed. MTBE had largely been considered recalcitrant to microbial processes, but recent fieldwork suggests rapid biodegradation may occur in certain cases. This paper investigates the potential for rhizosphere degradation of MTBE at time frames relevant for phytoremediation. Three experiments were conducted at different levels of aggregation to examine possible degradation of MTBE by rhizosphere microorganisms that had been acclimated to low levels of MTBE for 6 weeks. MTBE soil die-away studies, conducted with both poplar trees and fescue grass, found no significant differences between MTBE concentration in vegetated and unvegetated soils over a two-week attenuation period. Closed chamber tests comparing hydroponic and rhizospheric poplar tree systems also showed essentially complete recovery of MTBE mass in both systems, suggesting an absence of degradation. Finally, rhizosphere microbes tested in aerated bioreactors were found to be thriving and metabolizing root materials, but did not show measurable degradation of MTBE. In all tests, the MTBE degradation product, Tert Butyl Alcohol (TBA), was not detected. The insignificance of MTBE degradation by rhizosphere microorganisms suggests that plant processes be the primary focus of further research on MTBE phytoremediation.
Persistent organic pollutants (POPs) are a set of chemicals that are toxic, persist in the environment for long periods of time, and biomagnify as they move up through the food chain. Combustion technologies have been the principal technology used to destroy POPs. However, combustion technologies can create polychlorinated dibenzo-p-dioxins and polychlorinated dibenzo-p-furans, which are human carcinogens. Two organizations, the United Nations Environment Programme (UNEP) and the International HCH and Pesticides Association (IHPA) have developed detailed reports and fact sheets about noncombustion technologies for POP treatment. This article is intended to update and summarize these reports in a concise reader's guide, with links to sources of further information. The updated information was obtained by reviewing various Web sites and documents, and by contacting technology vendors and experts in the field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.