Human fibrinogen has an Arg-Gly-Asp-Ser (RGDS) sequence at residues 572- 575 of its A alpha-chain. Although RGDS-containing peptides inhibit fibrinogen binding to stimulated platelets, these peptides also inhibit platelet binding of human fibrinogen fragment X and rat fibrinogen, which lack RGDS sequences corresponding to A alpha 572–575. Thus competition between free RGD-containing peptides and internal RGDS sequence at A alpha 572–575 is not the basis for their inhibition of fibrinogen binding to platelets. Addition of a Thr to the carboxy- terminus and an Asn to the amino-terminus of the RGDS sequence, the amino acids corresponding to A alpha 576 and 571 respectively, reduced the inhibitory potency of RGDS-containing peptides by fourfold to tenfold. Arg-Gly-Asp-Phe (RGDF) corresponds to A alpha 95–98, and the RGDF peptide was an effective inhibitor of fibrinogen binding, fourfold to fivefold more potent than RGDS. Thus, local primary structure may play an important role in regulating the capacity of RGD sequences in proteins to interact with specific adhesion receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.