Photoluminescence temperature quenching of tetraphenylporphyrins thin films on silicon substrates have been investigated. Free-based tetraphenylporphyrin (H2TPP) and Zinc-tetraphenylporphyrin (ZnTPP) films were obtained by thermal evaporation in vacuum. The photoluminescence properties of these samples are observed in the wide temperature range from 77 to 300 K. The temperature-depended photoluminescence intensity of ZnTPP exhibits abnormal behaviour. An increase in the photoluminescence intensity is observed in the temperature range of 77-180 K. We suppose that charge carriers are trapped by non-radiative centres when the temperature decreases down to 77 K. The release of carriers occurs with a further temperature increase. In addition, there are sharp increases in the luminescence intensity of thin H2TPP and ZnTPP films at a temperature of 270 K, which are associated with a second-order phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.