In this paper, we consider the stochastic fractional-space Chiral nonlinear Schrödinger equation (S-FS-CNSE) derived via multiplicative noise. We obtain the exact solutions of the S-FS-CNSE by using the Riccati equation method. The obtained solutions are extremely important in the development of nuclear medicine, the entire computer industry and quantum mechanics, especially in the quantum hall effect. Moreover, we discuss how the multiplicative noise affects the exact solutions of the S-FS-CNSE. This equation has never previously been studied using a combination of multiplicative noise and fractional space.
COVID-19 has become a world wide pandemic since its first appearance at the end of the year 2019. Although some vaccines have already been announced, a new mutant version has been reported in UK. We certainly should be more careful and make further investigations to the virus spread and dynamics. This work investigates dynamics in Lotka-Volterra based Models of COVID-19. The proposed models involve fractional derivatives which provide more adequacy and realistic description of the natural phenomena arising from such models. Existence and boundedness of non-negative solution of the fractional model is proved. Local stability is also discussed based on Matignon’s stability conditions. Numerical results show that the fractional parameter has effect on flattening the curves of the coexistence steady state. This interesting foundation might be used among the public health strategies to control the spread of COVID-19 and its mutated versions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.