.[1] We show that the rate of association between terrestrial gamma ray flashes (TGFs) observed by the Fermi gamma ray burst monitor and VLF discharges detected by the World Wide Lightning Location Network (WWLLN) depends strongly on the duration of the TGF, with the shortest TGFs having associated WWLLN events over 50% of the time, and the longest TGFs showing a less than 10% match rate. This correlation is stronger if one excludes the WWLLN discharges that are not simultaneous (within 200 ms) with the TGF. We infer that the simultaneous VLF discharges are from the relativistic electron avalanches that are responsible for the flash of gamma rays and the nonsimultaneous VLF discharges are from related intracloud lightning strokes. The distributions of far-field radiated VLF stroke energy measured by WWLLN for the simultaneous and nonsimultaneous discharges support the hypothesis of two discrete populations of VLF signals associated with TGFs, with the simultaneous discharges among the strongest measured by WWLLN.
We report on the spectral analysis of individual terrestrial gamma‐ray flashes (TGFs) observed with the Fermi Gamma‐ray Burst Monitor (GBM). The large GBM TGF sample provides 46 events suitable for individual spectral analysis: sufficiently bright, localized by ground‐based radio, and with the gamma rays reaching a detector unobstructed. These TGFs exhibit diverse spectral characteristics that are hidden when using summed analysis methods. We account for the low counts in individual TGFs by using Poisson likelihood, and we also consider instrumental effects. The data are fit with models obtained from Monte Carlo simulations of the large‐scale Relativistic Runaway Electron Avalanche (RREA) model, including propagation through the atmosphere. Source altitudes ranging from 11.6 to 20.2 km are simulated. Two beaming geometries were considered: In one, the photons retain the intrinsic distribution from scattering (narrow), and in the other, the photons are smeared into a wider beam (wide). Several TGFs are well fit only by narrow‐beam models, while others favor wide‐beam models. Large‐scale RREA models can accommodate both narrow and wide beams, with narrow beams suggest large‐scale RREA in organized electric fields while wide beams may imply converging or diverging electric fields. Wide beams are also consistent with acceleration in the electric fields of lightning leaders, but the TGFs that favor narrow‐beam models appear inconsistent with some lightning leader models.
[1] We report on a search for correlations between terrestrial gamma ray flashes (TGFs) detected by the Fermi Gamma-ray Burst Monitor (GBM) and lightning strokes measured using the World Wide Lightning Location Network (WWLLN). We associate 15 of a total 50 GBM-detected TGFs with individual discharges. We establish the relative timing between the TGF and the lightning stroke to an accuracy of <50 ms, and find that in 13 of these 15 lightning-TGF associations, the lightning stroke and the peak of the TGF are simultaneous to ∼40 ms. This suggests that a large fraction of TGFs are coincident with lightning discharges. The two nonsimultaneous associations do not show a consistent TGF-lightning stroke temporal sequence. All 15 associations are with sferics within 300 km of the subspacecraft position. For those TGFs not correlated with a particular lightning stroke, we find storm activity within 300 km of the subspacecraft position in all but four of the TGFs. For three of these four TGFs, we find storm activity very close to one of the magnetic footprints of the spacecraft position. We associate the subspacecraft TGFs with gamma ray events and the footprint events with electrons traveling along magnetic field lines before hitting the Fermi spacecraft.
We present the first Fermi Space Telescope Gamma Ray Burst Monitor (GBM) catalog of 4,144 terrestrial gamma ray flashes (TGFs), detected since launch in 11 July 2008 through 31 July 2016. We discuss the updates and improvements to the triggered data and off-line search algorithms, comparing this improved detection rate of ∼800 TGFs per year with event rates from previously published TGF catalogs from other missions. A Bayesian block algorithm calculated the temporal and spectral properties of the TGFs, revealing a delay between the hard (>300 keV) and soft (≤300 keV) photons of around 27 μs. Detector count rates of "low-fluence" events were found to have average rates exceeding 150 kHz. Searching the World-Wide Lightning Location Network data for radio sferics within ±5 min of each TGF revealed a clean sample of 1,314 World-Wide Lightning Location Network locations, which were used to to accurately locate TGF-producing storms. It also revealed lightning and storm activity for specific regions, as well as seasonal and daily variations of global lightning patterns. Correcting for the orbit of Fermi, we quantitatively find a marginal excess of TGFs being produced from storms over land near oceans (i.e., narrow isthmuses and small islands). No difference was observed between the duration of TGFs over the ocean and land. The distribution of TGFs at a given local solar time for predefined American, Asian, and African regions were confirmed to correlate well with known regional lightning rates. Figure 17. The hardness ratio (E ≤ 300/E ≤ 300) for each terrestrial gamma ray flash (TGF). The mean ratio of the TGFs in this sample seem to be just slightly above the pivot energy (∼316 keV).
Terrestrial gamma ray flashes (TGFs) are brief bursts of energetic gammy‐ray photons generated during thunderstorms, which have been detected almost exclusively by satellite‐based instruments. Here we present three lines of evidence which includes the three out of three simultaneously observed pairs, the same occurrence contexts, and the consistent estimated occurrence rate, which indicate a direct relationship between a subset of TGFs and a class of energetic radio signal easily detectable by ground‐based sensors. This connection indicates that these gamma ray and radio emissions are two views of the same phenomenon and further enable detection of these TGFs from ground distant radio signals alone. Besides dramatically increasing the detection rate of TGFs, this ground detection approach can identify TGFs in continental and coastal areas that are at latitudes too high for present TGF‐detecting satellites and will provide more insights into the mechanism of TGF production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.