We present the final results from a high sampling rate, multi-month, spectrophotometric reverberation mapping campaign undertaken to obtain either new or improved Hβ reverberation lag measurements for several relatively low-luminosity active galactic nuclei (AGNs). We have reliably measured the time delay between variations in the continuum and Hβ emission line in six local Seyfert 1 galaxies. These measurements are used to calculate the mass of the supermassive black hole at the center of each of these AGNs. We place our results in context to the most current calibration of the broad-line region (BLR) R BLR -L relationship, where our results remove outliers and reduce the scatter at the low-luminosity end of this relationship. We also present velocity-resolved Hβ time-delay measurements for our complete sample, though the clearest velocity-resolved kinematic signatures have already been published.
Any successful model of galaxy formation needs to explain the low rate of star formation in the small progenitors of today's galaxies. This inefficiency is necessary for reproducing the low stellar-to-virial mass fractions, suggested by current abundance matching models. A possible driver of this low efficiency is the radiation pressure exerted by ionizing photons from massive stars. The effect of radiation pressure in cosmological, zoom-in galaxy formation simulations is modeled as a non-thermal pressure that acts only in dense and optically thick star-forming regions. We also include photoionization and photoheating by massive stars. The full photoionization of hydrogen reduces the radiative cooling in the 10 4−4.5 K regime. The main effect of radiation pressure is to regulate and limit the high values of gas density and the amount of gas available for star formation. This maintains a low star formation rate of ∼ 1 M ⊙ yr −1 in halos with masses about 10 11 M ⊙ at z ≃ 3. Infrared trapping and photoionization/photoheating processes are secondary effects in this mass range. The galaxies residing in these low-mass halos contain only ∼ 0.6% of the total virial mass in stars, roughly consistent with abundance matching. Radiative feedback maintains an extended galaxy with a rising circular velocity profile.
We present the results of extensive multi-frequency monitoring of the radio galaxy 3C 120 between 2002 and 2007 at X-ray (2-10 keV), optical (R and V band), and radio (14.5 and 37 GHz) wave bands, as well as imaging with the Very Long Baseline Array (VLBA) at 43 GHz. Over the 5 yr of observation, significant dips in the X-ray light curve are followed by ejections of bright superluminal knots in the VLBA images. Consistent with this, the X-ray flux and 37 GHz flux are anti-correlated with X-ray leading the radio variations. Furthermore, the total radiative output of a radio flare is related to the equivalent width of the corresponding X-ray dip. This implies that, in this radio galaxy, the radiative state of accretion disk plus corona system, where the X-rays are produced, has a direct effect on the events in the jet, where the radio emission originates. The X-ray power spectral density of 3C 120 shows a break, with steeper slope at shorter timescale and the break timescale is commensurate with the mass of the central black hole based on observations of Seyfert galaxies and black hole X-ray binaries. These findings provide support for the paradigm that black hole X-ray binaries and both radio-loud and radio-quiet active galactic nuclei are fundamentally similar systems, with characteristic time and size scales linearly proportional to the mass of the central black hole. The X-ray and optical variations are strongly correlated in 3C 120, which implies that the optical emission in this object arises from the same general region as the X-rays, i.e., in the accretion diskcorona system. We numerically model multi-wavelength light curves of 3C 120 from such a system with the optical-UV emission produced in the disk and the X-rays generated by scattering of thermal photons by hot electrons in the corona. From the comparison of the temporal properties of the model light curves to that of the observed variability, we constrain the physical size of the corona and the distances of the emitting regions from the central BH. In addition, we discus physical scenarios for the disk-jet connection that are consistent with our observations.
A detailed analysis of the data from a high sampling rate, multi-month reverberation mapping campaign, undertaken primarily at MDM Observatory with supporting observations from telescopes around the world, reveals that the Hβ emission region within the broad line regions (BLRs) of several nearby AGNs exhibit a variety of kinematic behaviors. While the primary goal of this campaign was to obtain either new or improved Hβ reverberation lag measurements for several relatively low luminosity AGNs, we were also able to unambiguously reconstruct velocity-resolved reverberation signals from a subset of our targets. Through high cadence spectroscopic monitoring of the optical continuum and broad Hβ emission line variations observed in the nuclear regions of NGC 3227, NGC 3516, and NGC 5548, we clearly see evidence for outflowing, infalling, and virialized BLR gas motions, respectively.
We present the first observation of a galaxy (z = 0.2) that exhibits metal-line absorption back-illuminated by the galaxy ("down-the-barrel") and transversely by a background quasar at a projected distance of 58 kpc. Both absorption systems, traced by Mg II, are blueshifted relative to the galaxy systemic velocity. The quasar sight-line, which resides almost directly along the projected minor axis of the galaxy, probes Mg I and Mg II absorption obtained from Keck/LRIS and Ly α, Si II and Si III absorption obtained from HST/COS. For the first time, we combine two independent models used to quantify the outflow properties for down-the-barrel and transverse absorption. We find that the modeled down-the-barrel deprojected outflow velocities range between V dtb = 45 − 255 km s −1 . The transverse bi-conical outflow model, assuming constant-velocity flows perpendicular to the disk, requires wind velocities V out f low = 40 − 80 km s −1 to reproduce the transverse Mg II absorption kinematics, which is consistent with the range of V dtb . The galaxy has a metallicity, derived from Hα and N II, of [O/H]=−0.21±0.08, whereas the transverse absorption has [X/H] = −1.12 ± 0.02. The galaxy star-formation rate is constrained between 4.6-15 M ⊙ yr −1 while the estimated outflow rate ranges between 1.6-4.2 M ⊙ yr −1 and yields a wind loading factor ranging between 0.1 − 0.9. The galaxy and gas metallicities, the galaxy-quasar sight-line geometry, and the down-the-barrel and transverse modeled outflow velocities collectively suggest that the transverse gas originates from ongoing outflowing material from the galaxy. The ∼1 dex decrease in metallicity from the base of the outflow to the outer halo suggests metal dilution of the gas by the time it reached 58 kpc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.