Background: Hypofractionated-SRS (HF-SRS) may allow for improved local control and a reduced risk of radiation necrosis compared to single-fraction-SRS (SF-SRS). However, data comparing these two treatment approaches are limited. The purpose of this study was to compare clinical outcomes between SF-SRS versus HF-SRS across our multi-center academic network. Methods: Patients treated with SF-SRS or HF-SRS for brain metastasis from 2013 to 2018 across 5 radiation oncology centers were retrospectively reviewed. SF-SRS dosing was standardized, whereas HF-SRS dosing regimens were variable. The co-primary endpoints of local control and radiation necrosis were estimated using the Kaplan Meier method. Multivariate analysis using Cox proportional hazards modeling was performed to evaluate the impact of select independent variables on the outcomes of interest. Propensity score adjustments were used to reduce the effects confounding variables. To assess dose response for HF-SRS, Biologic Effective Dose (BED) assuming an α/β of 10 (BED 10) was used as a surrogate for total dose.
Spatially fractionated radiotherapy (GRID) has been utilized primarily in the palliative and definitive treatment of bulky tumors. Delivered in the modern era primarily with megavoltage photon therapy, this technique offers the promise of safe dose escalation with potential immunogenic, bystander and microvasculature effects that can augment a conventionally fractionated course of radiotherapy. At the University of Maryland, an institutional standard has arisen to incorporate a single fraction of GRID radiation in large (.8 cm), high-risk soft tissue and osteosarcomas prior to a standard fractionated course. Herein, we report on the excellent pathologic responses and apparent safety of this regimen in 26 consecutive patients.
Background and purpose Meningiomas express the somatostatin receptor (SSTR), which normal bone and brain lack. PET imaging with SSTR ligands such as 68 Ga-DOTATATE have been recently shown to aid in the imaging and identification of menginiomas. We hypothesize that 68 Ga-DOTATATE PET/CT in conjunction with MRI aids in radiation (RT) target volume delineation and evaluating treatment response. Materials and methods Nineteen patients with meningiomas underwent 68 Ga-DOTATATE PET/CT and MRI for RT planning and/or post-treatment follow-up. Meningiomas were grade I (n = 9) or not biopsied (n = 8) and frequently involved base of skull (n = 10). Ten (53%) patients received post-operative RT and 9 (47%) received fractaionted RT. In the subgroup that underwent both pre- and post-RT 68 Ga-DOTATATE PET as well as MRI (n = 10), ROVER (ABX GmbH, Radeberg, Germany) adaptive thresholding software was utilized to measure total lesion activity (mean and max) before and after treatment. Tumor volume based on MRI was calculated before and after treatment. Total lesion activity and tumor volume changes were compared using Wilcoxon signed rank test. Results 68 Ga-DOTATATE PET/CT identified intraosseous (n = 4, 22%), falcine (n = 5, 26%) and satellite lesions (n = 3, 19%) and clarified the diagnosis of meningioma, resulting in a change in management in three patients. Mean total lesion activity decreased 14.7% (median), from pre to post-RT 68 Ga-DOTATATE PET [range 97–8.5% (25–75%),S = − 26.5, p = 0.0039]. Max total lesion activity decreased 36% (median) over the same period [range 105–15% (25–75%), S = − 26.5 p = 0.0039]. In contrast, meningioma volumes based on MRI measurements did not significantly change per RECIST criteria and Wilcoxon signed rank test (S = − 3, p = 0.7422). Conclusion 68 Ga-DOTATATE PET/CT helped confirm suspected diagnoses and delineate target volumes particularly when lesions involved osseous structures and the falx. Mean and max total tumor 68 Ga-DOTATATE activity on PET/CT decreased at three months following RT despite stable tumor volumes on MRI. Future studies are warranted to (1) assess the sensitivity and specificity of 68 Ga-DOTATATE PET/CT, (2) evaluate the impact of 68 Ga-DOTATATE PET/CT-based planning on treatment outcomes, and (3) assess the prognostic significance of these post-treatment imaging changes.
Purpose Stereotactic radiation therapy (SRT) and immune checkpoint inhibitors (ICI) may act synergistically to improve treatment outcomes but may also increase the risk of symptomatic radiation necrosis (RN). The objective of this study was to compare outcomes for patients undergoing SRT with and without concurrent ICI. Methods and materials Patients treated for BMs with single or multi-fraction SRT were retrospectively reviewed. Concurrent ICI with SRT (SRT-ICI) was defined as administration within 3 months of SRT. Local control (LC), radiation necrosis (RN) risk and distant brain failure (DBF) were estimated by the Kaplan-Meier method and compared between groups using the log-rank test. Wilcoxon rank sum and Chi-square tests were used to compare covariates. Multivariate cox regression analysis (MVA) was performed. Results One hundred seventy-nine patients treated with SRT for 385 brain lesions were included; 36 patients with 99 lesions received SRT-ICI. Median follow up was 10.3 months (SRT alone) and 7.7 months (SRT- ICI) (p = 0.08). Lesions treated with SRT-ICI were more commonly squamous histology (17% vs 8%) melanoma (20% vs 2%) or renal cell carcinoma (8% vs 6%), (p < 0.001). Non-small cell lung cancer (NSCLC) compromised 60% of patients receiving ICI (n = 59). Lesions treated with SRT-ICI had significantly improved 1-year local control compared to SRT alone (98 and 89.5%, respectively (p = 0.0078). On subset analysis of NSCLC patients alone, ICI was also associated with improved 1 year local control (100% vs. 90.1%) (p = 0.018). On MVA, only tumor size ≤2 cm was significantly associated with LC (HR 0.38, p = 0.02), whereas the HR for concurrent ICI with SRS was 0.26 (p = 0.08). One year DBF (41% vs. 53%; p = 0.21), OS (58% vs. 56%; p = 0.79) and RN incidence (7% vs. 4%; p = 0.25) were similar for SRT alone versus SRT-ICI, for the population as a whole and those patients with NSCLC. Conclusion These results suggest SRT-ICI may improve local control of brain metastases and is not associated with an increased risk of symptomatic radiation necrosis in a cohort of predominantly NSCLC patients. Larger, prospective studies are necessary to validate these findings and better elucidate the impact of SRT-ICI on other disease outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.