This paper presents the results of a study investigating the energy performance of electrochromic windows under a variety of state-switching control strategies. We used the DOE-2.1E energy simulation program to analyze the annual cooling, lighting, and total electricity use and peak demand as a function of glazing type, size, and electrochromic control strategy. We simulated a prototypical commercial office building module located in the cooling-dominated location of Blythe, California. Control strategies analyzed were based on daylight illuminance, incident total solar radiation, and space cooling load. Our results show that when a daylighting strategy is used to reduce electric lighting requirements, control algorithms based on daylight illuminance results in the best overall annual energy performance. If daylighting is not a design option, controls based on space cooling load yield the best performance through solar heat gain reduction. The performance of the incident total solar radiation control strategies varies as a function of the values of solar radiation which trigger the bleached and colored states of the electrochromic (setpoint range); for small to moderate window sizes which result in small to moderate solar gains, a large setpoint-range was best since it provides increased illuminance for daylighting without much cooling penalty; for larger window sizes, which provide adequate daylight, a smaller setpoint-range was best to reduce unwanted solar heat gains and the consequential increased cooling requirement. Of particular importance is the fact that reduction in peak electric demand was found to be independent of the type of control strategy used for electrochromic switching. This is because the electrochromics are generally in their most colored state under peak conditions, and the mechanism used for achieving such a state is not important.
The light diffraction properties of holographic diffractive structures present an opportunity to improve the daylight performance in side-lit office spaces by redirecting and reflecting sunlight off the ceiling, providing adequate daylight illumination up to 30 ft (9.14 m) from the window wall. Prior studies of prototypical holographic glazings, installed above conventional "view" windows, have shown increased daylight levels over a deeper perimeter area than clear glass, for selected sun positions. In this study, we report on the simulation of the energy performance of prototypicai holographic glazings assuming a commercial office building in the inland Los Angeles climate. The simulation of the energy performance involved determination of both luminous and thermal performance. Since the optical complexity of holographic glazings prevented the use of conventional algorithms for the simulation of their luminous performance, we used a newly developed method that combines experimentally determined directional workplane illuminance coefficients with computer-based analytical routines to determine a comprehensive set of daylight factors for many sun positions. These daylight factors were then used within the DOE-2. I D energy simulation program to determine hourly daylight and energy performance over the course of an entire year for four window orientations. Since the prototypical holographic diffractive structures considered in this study were applied on single pane clear glass, we also simulated the performance of hypothetical glazings, assuming the daylight performance of the prototype holographic glazings and the thermal performance of double-pane and low-e glazings. The results of our analyses show that these prototypical holographic glazings did not save significant electric energy or reduce peak electricity demand compared to conventional energyefficient window systems in inland Los Angeles office buildings, mainly because of their low diffraction efficiency. Finally, we address various design and implementation issues towards potential performance improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.