An investigation into the magnitude and direction of the convective velocity in a plane air jet was performed. Convective velocities were obtained from cross-correlation measurements. They are defined as the ratio of the spacing between two hot-wire probes and the time delay between their signals to reach maximum correlation. These velocities were larger in magnitude than the local mean velocities for lateral distances greater than the half-width of the jet. Frequency analysis of the convective velocity indicates that the large-scale eddies move slower than the mean flow while the small scales move faster. Based on the convective velocity vector, broadband ‘convection lines’ were defined and found to point outward with respect to the streamlines for all values of y/b [Gt ] 0·5. Likewise, frequency investigation indicates that ‘convection lines’ point outward for all y/b [Lt ] 1·3 and then inward for larger values of y/b.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.