BACKGROUND Sentinel-lymph-node biopsy is associated with increased melanoma-specific survival (i.e., survival until death from melanoma) among patients with node-positive intermediate-thickness melanomas (1.2 to 3.5 mm). The value of completion lymph-node dissection for patients with sentinel-node metastases is not clear. METHODS In an international trial, we randomly assigned patients with sentinel-node metastases detected by means of standard pathological assessment or a multimarker molecular assay to immediate completion lymph-node dissection (dissection group) or nodal observation with ultrasonography (observation group). The primary end point was melanoma-specific survival. Secondary end points included disease-free survival and the cumulative rate of nonsentinel-node metastasis. RESULTS Immediate completion lymph-node dissection was not associated with increased melanoma-specific survival among 1934 patients with data that could be evaluated in an intention-to-treat analysis or among 1755 patients in the per-protocol analysis. In the per-protocol analysis, the mean (±SE) 3-year rate of melanoma-specific survival was similar in the dissection group and the observation group (86±1.3% and 86±1.2%, respectively; P=0.42 by the log-rank test) at a median follow-up of 43 months. The rate of disease-free survival was slightly higher in the dissection group than in the observation group (68±1.7% and 63±1.7%, respectively; P=0.05 by the log-rank test) at 3 years, based on an increased rate of disease control in the regional nodes at 3 years (92±1.0% vs. 77±1.5%; P<0.001 by the log-rank test); these results must be interpreted with caution. Nonsentinel-node metastases, identified in 11.5% of the patients in the dissection group, were a strong, independent prognostic factor for recurrence (hazard ratio, 1.78; P=0.005). Lymphedema was observed in 24.1% of the patients in the dissection group and in 6.3% of those in the observation group. CONCLUSIONS Immediate completion lymph-node dissection increased the rate of regional disease control and provided prognostic information but did not increase melanoma-specific survival among patients with melanoma and sentinel-node metastases. (Funded by the National Cancer Institute and others; MSLT-II ClinicalTrials.gov number, NCT00297895.)
There is consensus that an optimized cancer vaccine will have to induce not only CD8+ cytotoxic but also CD4+ T helper (Th) cells, particularly interferon (IFN)-γ–producing, type 1 Th cells. The induction of strong, ex vivo detectable type 1 Th cell responses has not been reported to date. We demonstrate now that the subcutaneous injection of cryopreserved, mature, antigen-loaded, monocyte-derived dendritic cells (DCs) rapidly induces unequivocal Th1 responses (ex vivo detectable IFN-γ–producing effectors as well as proliferating precursors) both to the control antigen KLH and to major histocompatibility complex (MHC) class II–restricted tumor peptides (melanoma-antigen [Mage]-3.DP4 and Mage-3.DR13) in the majority of 16 evaluable patients with metastatic melanoma. These Th1 cells recognized not only peptides, but also DCs loaded with Mage-3 protein, and in case of Mage-3DP4–specific Th1 cells IFN-γ was released even after direct recognition of viable, Mage-3–expressing HLA-DP4+ melanoma cells. The capacity of DCs to rapidly induce Th1 cells should be valuable to evaluate whether Th1 cells are instrumental in targeting human cancer and chronic infections.
The first tumor-specific shared antigens and the cancer-germline genes that code for these antigens were identified with antitumor cytolytic T lymphocytes obtained from cancer patients. A few HLA class I-restricted antigenic peptides were identified by this 'direct approach'. A large set of additional cancer-germline genes have now been identified by purely genetic approaches or by screening tumor cDNA expression libraries with the serum of cancer patients. As a result, a vast number of sequences are known that can code for tumor-specific shared antigens, but most of the encoded antigenic peptides have not yet been identified. We review here recent 'reverse immunology' approaches for the identification of new antigenic peptides. They are based on in vitro stimulation of naive T cells with dendritic cells that have either been loaded with a cancer-germline protein or that have been transduced with viruses carrying cancer-germline coding sequences. These approaches have led to the identification of many new antigenic peptides presented by class I or class II molecules. We also describe some aspects of the processing and presentation of these antigenic peptides.
Pemphigus vulgaris is a severe autoimmune disease caused by autoantibodies against the cutaneous adhesion molecule, desmoglein 3 (Dsg3). The aim of this study was to characterize the specificity of autoreactive Th cells, which presumably regulate Dsg3-specific autoantibody production. Ninety-seven Th1 and Th2 clones isolated from 16 pemphigus patients and 12 HLA-matched healthy donors recognized the Dsg3 peptides, DG3(78-94), DG3(96-112), DG3(189-205), DG3(205-221), and DG3(250-266). Peptide DG3(96-112), and to a lesser extent DG3(250-266), was recognized by the majority of T cells from patients and healthy donors in association with HLA-DRB1*0402 and DQB1*0503 which were prevalent in the pemphigus patients and Dsg3-responsive healthy donors. Analyzing the Vβ-chain of the TCR of the DG3(96-112)-specific T cells showed no restricted TCR usage. Peptides DG3(342-358) and DG3(376-392) were exclusively recognized by T cell clones (n = 13) from patients while DG3(483-499) was only recognized by T cell clones (n = 3) from a healthy donor. All Dsg3 peptides contained conserved amino acids at relative positions 1, 4, and 6; amino acids with a positive charge at position 4 presumably represent anchor motifs for DRB1*0402. These findings demonstrate that T cell recognition of distinct Dsg3 peptides is restricted by distinct HLA class II molecules and is independent from the development of pemphigus vulgaris.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.