A framework for porous media topology reconstruction from petrographic thin sections for clastic rocks is proposed. The framework is based on two sequential stages: segmentation of thin sections imagesinto grains, porous media, cement (with further mineralogical classification of segmented elements) and reconstructing a three-dimensional voxel model of rock at pore scale.
The framework exploits machine learning algorithms in order to segment2D thin section images, perform structural and mineralogical classification of grains, cement, pore space, and reconstruct 3D models of porous media. Segmentation of petrographic thin section images and mineral classification of the segmented objects are performed by the means of combination of image processing methods and Convolutional Neural Networks (CNNs). The 3D porous media reconstruction is done by means of the Generative Adversarial Networks (GANs) are applied to the segmented and classified 2D images of thin sections.
As the criteria of the reconstruction quality, the following metrics were numerically calculated and compared for original and reconstructed synthetic 3D models of porous rocks: Minkowski functionals (porosity, surface area, mean breadth, Euler characteristic) and absolute permeability. Absolute permeability was calculated using pore network model. The 3D reconstruction framework was tested on a set of thin sections and CT tomograms of the clastic samples from the Achimovskiy formation (Western Siberia). The results showed the validity of the goodness-of-fit metrics based on Minkowski functionals for reconstruction the topology of porous media. The combined usage of CNN and GAN allowed to create a robust 3D topology reconstruction framework. The calculated poroperm characteristics are correlated with laboratory measurements of porosity and permeability.
The developed algorithms of automatic feature extraction from petrographic thin sections and 3D reconstruction based on these features allow to achieve the following goals. First is the reduction of the amount of the routine work done by an expert during petrographic analysis. Second leads to the reduction of the number of expensive and time-consuming CT scannings required for each physical sample in order to perform further absolute and relative permeability calculations. The proposed method can bring the petrographic thin section and CT data analysis to a new level and significantly change traditional core experiments workflow in terms of speed, data integration and rock sample preparation.
Incorrect imaging of internal multiples can lead to substantial imaging artefacts. It is estimatedthat the majority of seismic images available to exploration and production companies have had nodirect attempt at internal multiple removal. In Part I of this article we considered the role of spar-sity promoting transforms for improving practical prediction quality for algorithms derived fromthe inverse scattering series (ISS). Furthermore, we proposed a demigration-migration approach toperform multidimensional internal multiple prediction with migrated data and provided a syntheticproof of concept. In this paper (Part II) we consider application of the demigration-migration approach to field data from the Norwegian Sea, and provide a comparison to a post-stack method (froma previous related work). Beyond application to a wider range of data with the proposed approach,we consider algorithmic and implementational optimizations of the ISS prediction algorithms tofurther improve the applicability of the multidimensional formulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.