[1] Dynamic simulations of homogeneous, heterogeneous and bimaterial fault rupture using modified slip-weakening frictional laws with static restrengthening are presented giving rise to both crack-like and pulse-like rupture. We demonstrate that pulse-like rupture is possible by making a modification of classical slip-weakening friction to include static restrengthening. We employ various slip-weakening frictional laws to examine their effect on the resulting earthquake rupture speed, size and mode. More complex rupture characteristics were produced with more strongly slip-weakening frictional laws, and the degree of slip-weakening had to be finely tuned to reproduce realistic earthquake rupture characteristics. Rupture propagation on a fault is controlled by the constitutive properties of the fault. We provide benchmark tests of our method against other reported solutions in the literature. We demonstrate the applicability of our elastoplastic fault model for modeling dynamic rupture and wave propagation in fault systems, and the rich array of dynamic properties produced by our elastoplastic finite element fault model. These are governed by a number of model parameters including: the spatial heterogeneity and material contrast across the fault, the fault strength, and not least of all the frictional law employed. Asymmetric bilateral fault rupture was produced for the bimaterial case, where the degree of material contrast influenced the rupture speed in the different propagation directions.
In this paper we will give a brief introduction into the python based modelling language escript. We will present a model for the dynamics of fault systems in the Earth's crust and then show how escript is used to implement solution algorithms for a dynamic as well as a quasi-static scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.