Because low back pain is frequently a result of intervertebral disc degeneration (IVDD), strategies to regenerate or repair the IVD are currently being investigated. Often, ex vivo disc cultures of non-human IVD organs or tissue explants are used that usually do not exhibit natural IVDD. Therefore, degenerative changes mimicking those reported in human IVDD need to be induced. To support researchers in selecting ex vivo disc cultures, a systematic search was performed for them and their potential use for studying human IVDD reviewed. Five degeneration induction categories (proinflammatory cytokines, injury/damage, degenerative loading, enzyme, and other) were identified in 129 studies across 7 species. Methods to induce degeneration are diverse and can induce mild to severe degenerative changes that progress over time, as described for human IVDD. The induced degenerative changes are model-specific and there is no “one-fits-all” IVDD induction method. Nevertheless, specific aspects of human IVDD can be well mimicked. Currently, spontaneously degenerated disc cultures from large animals capture human IVDD in most aspects. Combinatorial approaches of several induction methods using discs derived from large animals are promising to recapitulate pathological changes on several levels, such as cellular behaviour, extracellular matrix composition, and biomechanical function, and therefore better mimic human IVDD. Future disc culture setups might increase in complexity, and mimic human IVDD even better. As ex vivo disc cultures have the potential to reduce and even replace animal trials, especially during preclinical development, advancement of such models is highly relevant for more efficient and cost-effective clinical translation from bench-to-bedside.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.