A new method of heavy mineral (HM) separation and assessment of gold grade was compared with the results of conventional AAS analysis. Sixteen gold micronuggets and a number of particles of native metal and metal alloys (brass, tin, bismuth, lead) were extracted from 100 g of till fines (< 50 µm). From the size, number, and composition of micronuggets, the total gold grade (58 ppb) of till fines was evaluated. The assessments agree well with the results of AAS analysis (57 ppb). A slightly lower value (44 ppb) was obtained by Flame Atomic Absorption Analysis with Fire Assay (FAAS FA) method of the extracted HM. Mineralogical investigations allow identification of two types of gold micronuggets thus revealing a complex origin for the geochemical anomaly. The association of brass-pyroxene (Mg# = 80-82) with complex gold-brass-lead-tin intergrowths indicates that some gold in till is derived from ultramafic rocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.