Effects of different concentrations of ozone on grain filling, flag leaf senescence and final grain yield in field‐grown spring wheat (Triticum aestivum L. cv. Dragon) were studied using open‐top chambers. The hypothesis tested was that an ozone‐induced reduction in grain yield is mainly related to an enhanced senescence and a shortening of the grain‐filling period. The plants were exposed to filtered air (F), non‐filtered air without extra ozone (NF) or non‐filtered air with 3 different levels of ozone added (NF1+, NF2+ and NF3+). The mean daytime (08.00–20.00 h) ozone concentrations during the exposure period (31 days) were 7, 20, 34, 48 and 62 nmol mol−1 in F, NF, NF1+, NF2+ and NF3+, respectively. The corresponding ozone doses, expressed as the accumulated exposure over a concentration threshold of 40 nmol mol−1 (AOT40), were 0, 12, 1 989, 5 881 and 10 375 nmol mol−1 h, respectively, and 884, 2 594, 4 557, 6 188 and 7 900 μmol m−2, respectively, expressed as the calculated cumulative flag leaf ozone flux (CFO30). The flag leaves senesced earlier and the grain‐filling duration was significantly shorter at higher ozone exposure compared to F (−5, −13 and −18% in NF1+, NF2+ and NF3+, respectively). The relative grain‐filling rate did not differ between the treatments. The 1000‐grain weights were 10, 28 and 37% lower, and the grain yields were 15, 29 and 46% lower than F in NF1+, NF2+ and NF3+, respectively. Ozone exposure had no significant effect on the number of grains per unit ground area or on straw yield, but significantly reduced the harvest index and increased the grain protein concentration in NF2+ and NF3+ compared to F. The grain yield was negatively correlated with the ozone dose, expressed either as AOT40 or as CFO3 with or without an ozone flux threshold. The 1000‐grain weight was positively correlated with the grain‐filling duration (R2=0.998), which in turn was positively correlated with the leaf area duration (R2=0.989).