IntroductionVenous thromboembolism (VTE) is a frequent complication of trauma associated with high mortality and morbidity. Clinicians lack appropriate tools for stratifying trauma patients for VTE, thus have yet to be able to predict when to intervene. We aimed to compare random forest (RF) and logistic regression (LR) predictive modelling for VTE using (1) clinical measures alone, (2) serum biomarkers alone and (3) clinical measures plus serum biomarkers.MethodsData were collected from 73 military casualties with at least one extremity wound and prospectively enrolled in an observational study between 2007 and 2012. Clinical and serum cytokine data were collected. Modelling was performed with RF and LR based on the presence or absence of deep vein thrombosis (DVT) and/or pulmonary embolism (PE). For comparison, LR was also performed on the final variables from the RF model. Sensitivity/specificity and area under the curve (AUC) were reported.ResultsOf the 73 patients (median Injury Severity Score=16), nine (12.3%) developed VTE, four (5.5%) with DVT, four (5.5%) with PE, and one (1.4%) with both DVT and PE. In all sets of predictive models, RF outperformed LR. The best RF model generated with clinical and serum biomarkers included five variables (interleukin-15, monokine induced by gamma, vascular endothelial growth factor, total blood products at resuscitation and presence of soft tissue injury) and had an AUC of 0.946, sensitivity of 0.992 and specificity of 0.838.ConclusionsVTE may be predicted by clinical and molecular biomarkers in trauma patients. This will allow the development of clinical decision support tools which can help inform the management of high-risk patients for VTE.
Overall, the IFI tools produced clinically useful, robust models. However, the clinical utility of these models is highly dependent upon the clinician's individual risk tolerance. The threshold probability for optimal clinical use of this CDS tool is currently being evaluated in an ongoing clinical utilization study. CDS tools, such as these, may facilitate early diagnosis of patients with or at risk for IFI, permitting early or prophylactic treatment with the aim of improving outcomes.
Background:
Predicting survival for patients with metastatic bone disease in the extremities (MBDex) is important for ensuring the implant will outlive the patient. Hitherto, prediction models for these patients have been constructed using subjective assessments, mostly lacking biochemical variables.
Objectives:
To develop a prediction model for survival after surgery due to MBDex using biochemical variables and externally validate the model.
Methods:
We created Bayesian Belief Network models to estimate likelihood of survival 1, 3, 6, and 12 months after surgery using 140 patients. We validated the models using the data of 130 other patients and calculated the area under the Receiver Operator Characteristic curve (ROC). Variables included: hemoglobin, neutrophil-count, C-reactive protein, alkaline phosphatase, primary cancer, Karnofsky-score, ASA-score, visceral metastases, bone metastases, days from diagnose of primary cancer to index surgery for MBDex, ischemic heart disease, diabetes, fracture/impending-fracture and age.
Results:
Survival probabilities were influenced by all biochemical variables. Validation showed ROC for the 1, 3, 6, and 12-months model: 68% (C.I.: 55%-80%), 69% (C.I.: 60%-78%), 81% (C.I.: 74%-87%) and 84% (C.I.: 77%-90%).
Conclusion:
Biochemical markers can be incorporated into a prediction model for survival in patients having surgery for MBDex allowing surgeons to offer more objective and individualized treatment options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.