The rise in global temperatures, frequent natural disasters and rising sea levels, reducing Polar Regions have made the problem of understanding and predicting these global climate phenomena. Prediction is a matter of prime importance and they are run as computer simulations to predict
climate variables such as temperature, precipitation, rainfall and etc. The agricultural country called India in which 60% of the people depending upon the agriculture. Rain fall prediction is the most important task for predicting early prediction of rainfall May helps to peasant's as well
as for the people because most of the people in India can be depends upon the agriculture. The paper represents simple linear regression technique for the early prediction of rainfall. It can helps to farmers for taking appropriate decisions on crop yielding. As usually at the same time there
may be a scope to analyze the occurrence of floods or droughts. The simple linear regression analysis methodology applied on the dataset collected over six years of Coonor in Nilagris district from Tamil Nadu state. The experiment and our simple linear regression methodology exploit the appropriate
results for the rain fall.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.