The presence of a cathepsin B-like enzyme in rabbit ear cartilage was established by the use of the synthetic substrates benzoyl-l-arginine amide and benzoyl-dl-arginine 2-naphthylamide. This was facilitated by using a technique that permits the incubation of a fixed weight of thin (18mu) cartilage sections with an appropriate exogenous substrate. The enzymic properties of cathepsin B in cartilage have been compared with an endogenous enzyme that liberates chondromucopeptide by degrading the cartilage matrix autocatalytically at pH5. Besides being maximally active at pH4.7, these cartilage enzymes are enhanced in activity by cysteine and inhibited by arginine analogues, iodoacetamide, chloroquine and mercuric chloride. They are not inhibited by EDTA, di-isopropyl phosphorofluoridate and diethyl p-nitrophenyl phosphate. When inhibiting the release of chondromucopeptide from cartilage at pH5, the arginine-containing synthetic substrates are hydrolysed simultaneously. These enzymes also share the same heat-inactivation characteristics at various pH values, being stable at acid pH and unstable at neutral and alkaline pH. The experimental evidence indicates that a cathepsin B-like enzyme may be partly responsible for the autolytic degradation of cartilage matrix at pH5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.