, and full-length CycT1 (amino acids 728) [CycT1(1-728)], but not truncated CycT1(1-303), was also phosphorylated by CDK9. P-TEFb complexes containing a catalytically inactive CDK9 mutant (D167N) bound TAR RNA weakly and independently of ATP, as did a C-terminal truncated CDK9 mutant that was catalytically active but unable to undergo autophosphorylation. Analysis of different Tat proteins revealed that the 101-amino-acid SF2 HIV-1 Tat was unable to bind TAR with CycT1(1-303) in the absence of phosphorylated CDK9, whereas unphosphorylated CDK9 strongly blocked binding of HIV-2 Tat to TAR RNA in a manner that was reversed upon autophosphorylation. Replacement of CDK9 phosphorylation sites with negatively charged residues restored binding of CycT1(1-303)-D167N-Tat, and rendered D167N a more potent inhibitor of transcription in vitro. Taken together, these results demonstrate that CDK9 phosphorylation is required for high-affinity binding of Tat-P-TEFb to TAR RNA and that the state of P-TEFb phosphorylation may regulate Tat transactivation in vivo.Activation of human immunodeficiency virus type-1 (HIV-1) transcription by the virus-encoded transcription factor, Tat, provides an important paradigm for understanding the mechanisms that regulate transcription elongation by RNA polymerase II (RNAPII). Transcription complexes that form at the HIV-1 promoter in the absence of Tat are competent to initiate transcription but elongate inefficiently, due to the effects of negative general elongation factors (22,50,51,55,57; reviewed in references 16 and 56) and an inhibitory RNA structure that induces pausing of RNAPII complexes (38). Tat functions as a promoter-specific transcription elongation factor through binding to the transactivation response element (TAR) in the 5Ј-untranslated leader of viral transcripts to stimulate processive transcription by RNAPII (for a review, see references 29 and 30).Tat regulates an early step in transcription elongation that requires cyclin T1 (CycT1) and CDK9 (21,35,40,52,(58)(59)(60), which are subunits of the positive transcription elongation factor P-TEFb (36) and Tat-associated kinase (21, 23, 24) complexes. CDK9 is a Cdc2-related kinase (20) that promotes general elongation of transcription at many promoters in vitro and can phosphorylate the C-terminal domain (CTD) of the largest subunit of RNAPII (9,35,60). We previously cloned CycT1 as a protein that interacts strongly with the 48-amino-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.