ABSTRACT:The study investigated zinc availability in relation to selected soil properties in a crude-oil-polluted Eutric Tropofluvent in Egbema, Southeastern Nigeria. For this purpose, three treatments have been applied: unpolluted soil, polluted without vegetation and polluted with vegetation with five replicates arranged in a randomized complete block design. Guided by transect sampling technique, soil sampling was carried out in June 2008. Soil samples were collected from the three different land units using soil auger at a depth of 0-20 cm. Standard laboratory procedures were adopted in analysing the soils. Soil generated data were subjected to analysis of variance and correlation analysis. Results showed highly significant variation (p = 0.01) in bulk density, porosity, silt: clay ratio, pH, effective cation exchange capacity, percent base saturation, total nitrogen, organic matter, available phosphorus, calcium: magnesium ratio and zinc. It was found that zinc was higher in crude oil polluted soils than in non-polluted soil and it was below critical limits. Zinc availability in relation to selected soil properties in the crude oil polluted soils indicated that clay and organic matter did not affect zinc availability, while pH and effective cation exchange capacity did. A study on zinc dynamics in crude-oil-polluted soils will certainly provide further information on the management of crude-oil-polluted soils since it is one of the key micronutrient for crop productivity.
S U M M A R YThe mineralogy of the clay fraction (<2/*m) of nine soil samples representing three physiographic positions of a toposequence in Ochon, south-eastern Nigeria, was determined by transmission electron microscopy and X-ray diffraction.Soils in the crest and middle slopes (pedons TE1 and TE2, respectively) of the toposequence, formed over fine-grained sandstone, were coarse-textured, well-drained and acidic and had low effective cation exchange capacity and percentage base saturation. Kaolinite, mica, quartz, goethite and gibbsite were the principal minerals identified in the clay fraction of these soils. Soils in the valley bottom (pedon TE3) formed over arenaceous shale were, on the other hand, fine-textured, poorly drained and weakly acidic with higher cation exchange capacity and percentage base saturation. Their clay fraction mineralogy was similar to that of the well-drained upland soils but additionally included feldspar and smectite/vermiculite mixed layer minerals.Mixed cropping of yam, cassava, maize and other annuals under traditional methods was carried out on the drier, well-drained crest and upper slopes while sole cropping of lowland rice occurred in the poorly drained, more fertile valley-bottom site. The valley-bottom soils show greater potential for improvement in agricultural productivity under good management than the upland soils.
Four basaltic profiles located in northern Cross River State of Nigeria are described and characterized. The soils are classified as Typic Tropohumult and show strong acidity, low effective CEC, low N and available P. Organic matter levels of the surface soils are high.All the soils are well drained in spite of high YO clay, which is apparently kaolinitic, with moderate to high A1 saturation. Higher agricultural productivity of these soils is restricted by low effective CEC and strong acidity. Measures to combat these problems are suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.