The proton pump inhibitors omeprazole and lansoprazole and its acid-activated derivative AG-2000, which are potent and specific inhibitors of urease of Helicobacter pylori (K. Nagata, H. Satoh, T. Iwahi, T. Shimoyama, and T. Tamura, Antimicrob. Agents Chemother. 37:769-774,1993), inhibited the growth of H. pylori. The growth was inhibited not only in urease-positive clinical isolates but also in their urease-negative derivatives which had no urease polypeptides. AG-1789, a derivative of lansoprazole with no inhibitory activity against H. pylori urease, also inhibited the growth of both strains even more strongly than the urease inhibitors lansoprazole and AG-2000. Furthermore, the antibacterial activity of omeprazole and lansoprazole was not affected by glutathione or dithiothreitol, which completely abolished the inhibitory activity of lansoprazole against H. pylori urease. These results indicated that the inhibitory action of these compounds against the growth of H. pylori was independent from the inhibitory action against urease.
The proton pump inhibitors (PPIs) omeprazole and lansoprazole and the acid-activated analog of lansoprazole AG-2000, which potently inhibit the urease of Helicobacter pylori (K. Nagata, H. Satoh, T. Iwahi, T. Shimoyama, and T. Tamura, Antimicrob. Agents Chemother. 37:769-774, 1993), also inhibited the urease activities of cell-free extracts as well as intact cells of Ureaplasma urealyticum. The 50% inhibitory concentrations were between 1 and 25 M. These compounds also inhibited the ATP synthesis induced by urea in ureaplasma cells. The 50% inhibitory concentrations for ATP synthesis were close to those for urease activity, but they were lower than those of urease inhibitors, such as acetohydroxamic acid, hydroxyurea, and thiourea. In addition, one of the metabolites of lansoprazole found in human urine, M-VI, also inhibited ureaplasmal urease activity and the ATP synthesis induced by urea at almost the same concentrations as those of lansoprazole. The inhibition of PPIs against ureaplasma urease was very similar to those against H. pylori urease, suggesting that the inhibitory mechanism against these ureases was due to the blockage of the SH residues on the cysteine of the enzyme. Omeprazole, lansoprazole, AG-2000, and M-VI inhibited the growth of U. urealyticum. Since ureaplasma urease is thought to be involved in the pathogenicity of this organism in the urogenital tract, PPIs and their analogs may be useful as chemotherapeutic agents against diseases caused by U. urealyticum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.