Titanium base alloys are among the most important advanced materials for a wide variety of aerospace, marine, industrial and commercial applications, due to their high strength/weight ratio and good corrosion behavior. Although titanium is generally considered to be reasonably resistant to chemical attack, severe problems can arise when titanium base alloys come in contact with hydrogen containing environments. Titanium base alloys can pick up large amounts of hydrogen when exposed to these environments, especially at elevated temperatures. If the hydrogen remains in the titanium lattice, it may lead to severe degradation of the mechanical and fracture behavior of these alloys upon cooling. As a consequence of the different behavior of hydrogen in and phases of titanium (different solubility, different diffusion kinetics, etc), the susceptibility of each of these phases to the various forms of and conditions of hydrogen degradation can vary markedly. This paper presents an overview of hydrogen interactions with titanium alloys, with specific emphasis on the role of microstructure on hydrogen-assisted degradation in these alloys.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.