In mature trabecular bone, both density and trabecular orientation are adapted to external mechanical loads. Few quantitative data are available on the development of architecture and mechanical adaptation in juvenile trabecular bone. We studied the hypothesis that a time lag occurs between the adaptation of trabecular density and the adaptation of trabecular architecture during development. To investigate this hypothesis we used ten female pigs at 6, 23, 56, 104, and 230 weeks of age. Three-dimensional morphological and mechanical parameters of trabecular bone samples from the vertebra and proximal tibia were studied using microcomputed tomography and micro-finite element analysis. Both bone volume fraction and stiffness increased rapidly in the initial growth phase (from 6 weeks on), whereas the morphological anisotropy started increasing only after 23 weeks of age. In addition, the anisotropy reached its highest value much later in the development than did bone volume fraction. Hence, the alignment of trabeculae was still progressing at the time of peak bone mass. Therefore, our hypothesis was supported by the time lag between the increase in trabecular density and the adaptation of the trabecular architecture. The rapid increase of bone volume fraction in the initial growth phase can be explained by the enormous weight increase of the pigs. The trabeculae aligned at later stages when the increase in weight, and thus the loading, was slowed considerably compared with the early growth stage. Hence, the trabecular architecture was more efficient in later years. We conclude that density is adapted to external load from the early phase of growth, whereas the trabecular architecture is adapted later in the development.
Longitudinal growth of long bones takes place at the growth plates. The growth plate produces new bone trabeculae, which are later resorbed or merged into the cortical shell. This process implies transition of trabecular metaphyseal sections into diaphyseal sections. We hypothesize that the development of cortical bone is governed by mechanical stimuli. We also hypothesize that trabecular and cortical bone share the same regulatory mechanisms for adaptation to mechanical loads. To test these hypotheses, we monitored the development of the tibial cortex in growing pigs, using micro-computer tomography and histology. We then tested the concept that regulatory mechanisms for trabecular bone adaptation can also explain cortical bone development using our mechanical stimulation theory, which could explain trabecular bone (re)modelling. The main results showed that, from the growth plate towards the diaphysis, the pores of the trabecular structure were gradually filled in with bone, which resulted in increased density and cortical bone. The computer model largely predicted this morphological development. We conclude that merging of metaphyseal trabeculae into cortex is likely to be governed by mechanical stimuli. Furthermore, cortex development of growing long bones can be explained as a form of trabecular bone adaptation, without the need for different regulatory mechanisms for cortical and trabecular bone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.