Lately, vitamin D has been linked with metabolic and immunological processes, which established its role as an essential component of human health preservation. Vitamin D has been defined as natural immune modulators, and upon activation of its receptors (VDRs), it regulates calcium metabolism, cellular growth, proliferation and apoptosis, and other immunological functions. Epidemiological data underline a strong correlation between poor vitamin D status and higher risk for chronic inflammatory illnesses of various etiologies, including autoimmune diseases. Epidemiological, genetic, and basic studies indicated a potential role of vitamin D in the pathogenesis of certain systemic and organ-specific autoimmune diseases. These studies demonstrate correlation between low vitamin D and prevalence of diseases. In addition, VDRs' polymorphisms observed in some of these autoimmune diseases may further support a plausible pathogenic link. Notably, for some autoimmune disease, no correlation with vitamin D levels could be confirmed. Thus, in the current review we present the body of evidence regarding the plausible roles of vitamin D and VDR's polymorphism in the pathogenesis of autoimmunity. We summarize the data regarding systemic (i.e., systemic lupus erythematosus, rheumatoid arthritis, etc.) and organ-specific (i.e., multiple sclerosis, diabetes mellitus, primary biliary cirrhosis, etc.) autoimmune diseases, in which low level of vitamin D was found comparing to healthy subjects. In addition, we discuss the correlations between vitamin D levels and clinical manifestations and/or activity of diseases. In this context, we address the rational for vitamin D supplementation in patients suffering from autoimmune diseases. Further studies addressing the mechanisms by which vitamin D affects autoimmunity and the proper supplementation required are needed.
Summary. The absorption of cholesterol has been studied in man by perfusing the upper jejunum with a micellar solution of bile salt, 1-monoglyceride, and cholesterol-14C, with a triple lumen tube with collection sites 50 cm apart. The absorption of micellar components between the collection sites was calculated from their concentration changes relative to those of the watersoluble marker, polyethylene glycol. Control experiments were performed with cholesterol-free perfusions of saline or bile salt-monoglyceride solutions. Steady state conditions were obtained.Each of the components of the micelle was absorbed to a different extent during passage through the test segment of jejunum. Bile salt was not absorbed (mean, -3%), but micellar monoglyceride was rapidly hydrolyzed and absorbed almost completely (mean, 98%). Cholesterol radioactivity was absorbed to an intermediate extent (mean, 73%), and the absorption of chemically determined cholesterol (mean, 46%) indicated that much of the disappearance of radioactivity represented true absorption and not simple exchange.The specific activity of the perfused cholesterol fell during passage through the loop. This fall was interpreted as signifying the continuous addition of nonradioactive endogenous cholesterol by the test segment. However, the decrease in specific activity may also be considered to signify exchange, in that nonradioactive molecules entered the lumen as radioactive molecules were absorbed. Plant sterols appeared in the intestinal contents during the perfusion and must have been contributed by the perfused segment.The perfusate and samples taken from the upper and lower collection sites were examined by ultracentrifugation to define the physical state of cholesterol. It was found that cholesterol in the perfusate or upper collection site samples did not sediment, but that 23% of the cholesterol in the lower collection site samples was sedimentable (mean of three experiments); bile salt, as control, was not sedimentable. Solubility experiments in model systems showed that cholesterol possessed low solubility in bile salt solution; its solubility increased markedly and in linear proportion to the amount of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.