The 2022 Roadmap is the next update in the series of Plasma Roadmaps published by Journal of Physics D with the intent to identify important outstanding challenges in the field of low-temperature plasma (LTP) physics and technology. The format of the Roadmap is the same as the previous Roadmaps representing the visions of 41 leading experts representing 21 countries and five continents in the various sub-fields of LTP science and technology. In recognition of the evolution in the field, several new topics have been introduced or given more prominence. These new topics and emphasis highlight increased interests in plasma-enabled additive manufacturing, soft materials, electrification of chemical conversions, plasma propulsion, extreme plasma regimes, plasmas in hypersonics, data-driven plasma science and technology and the contribution of LTP to combat COVID-19. In the last few decades, LTP science and technology has made a tremendously positive impact on our society. It is our hope that this roadmap will help continue this excellent track record over the next 5–10 years.
This paper discusses the role of magnetic fields in dusty (complex) plasma experiments. It first provides a description of the conditions necessary for a dusty plasma to become fully magnetized. The paper then briefly reviews a series of experimental studies that illustrate how magnetic fields are applied to dusty plasmas-from experiments that use magnetic fields to control the background plasma to those that have strong enough magnetic fields to directly modify the confinement and dynamics of the charged microparticles. The paper will then discuss the newest experiment that is currently under development at Auburn University, the magnetized dusty plasma experiment device. The paper concludes with a discussion of important outstanding physics and technical issues that will define the next generation of experiments.
Over the past 5 years, two-dimensional particle image velocimetry (PIV) techniques [E. Thomas, Jr., Phys. Plasmas 6, 2672 (1999)] have been used to obtain detailed measurements of microparticle transport in dusty plasmas. This Letter reports on an extension of these techniques to a three-dimensional velocity vector measurement approach using stereoscopic PIV. Initial measurements using the stereoscopic PIV diagnostic are presented.
An experimental study of the formation of voids ͑dust-free regions͒ around negatively biased probes in a dusty plasma is described. Stable voids are maintained by the balance of electric and ion drag forces on the dust particles. A theoretical model is proposed to explain how the size of the void scales with the probe bias potential.
The Magnetized Dusty Plasma Experiment at Auburn University has been operational for over one year. In that time, a number of experiments have been performed at magnetic fields up to B = 2.5 T to explore the interaction between magnetized plasmas and charged, micron-sized dust particles. This paper reports on the initial results from studies of: (a) the formation of imposed, ordered structures, (b) the properties of dust wave waves in a rotating frame, and (c) the generation of plasma filaments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.