To study the importance of the effects of genotype–environment interactions on the yield of pigeonpea (Cajanus cajan L. Millsp.), 10 early‐maturing genotypes were grown in a randomized complete block design with three replications in a total of seven environments spread over five regions of Kenya between 1987 and 1988. Results indicated the presence of a substantial genotype–environment interaction effect on grain yield. The observed significant genotype–environment interaction effect is discussed in relation to its importance in pigeonpea grain yield evaluation studies. It is noted that the best genotype in one environment is not always so in other environments. Results from regression analysis indicated that this method of analysis is appropriate for describing the response of pigeonpea genotypes grown in a number of locations. Analysis of variance showed significant additive and multiplicative genotype–environment interaction effects. Only the first interaction principal component axis (IPCA) was found to be important in describing the multiplicative interaction effects. The additive main effects and multiplicative effects (AMMI) model allowed the partitioning of interaction variance into agronomically important sources (genotype groups), and the specific genotype × environment patterns that are the basis of these sources of variance were examined.
The Understanding of the different fractions of Zinc in soils is important to effectively manage fertilizer resources due to the low availability of Zinc in the native soil worldwide. Bioavailability, uptake of Zinc by plant and its fractions depend largely on the soil parent material, the type of chemical transformation the soil has been expose to over times and some anthropogenic intervention. This study examined five different Zn pools.The distribution of Zn in soil fractions was determined for seven selected soils of South Western Nigeria. A sequential batch extraction which had been modified was used to identify Zn fractions and were separated into: the extractable zinc (Ex-Zn), zinc associated with the carbonate (CO 3 -Zn), the organically bound zinc (Org-Zn), sesquioxide (Ox-Zn) and residual (Res-Zn) in each soil. Total Zn was estimated as a sum of all the pools.Result showed that Zinc fractions in the soils were in this order: extractible pool (3.8%) < organic pool (13.6%) < carbonate pool (14.8%) < sesquioxide pool (22.8%) < residual pool (45.1%). The residual pool amounts for almost half of the zinc that made up the total zinc in the soil. The distribution of zinc into these pools were determined by selected physical and chemical properties of the soil; the pH, organic carbon, clay, CEC, and phosphorus. However, soil phosphorus and pH had the highest influence on the zinc in the experimental soils. The stable fraction that dominated the soil was evident in the low extractable Zn fractions in the soil. Which is an indication of the inherently low levels of the bioavailability of Zn in the selected soils used in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.