Metabolic changes are associated with cancer, but whether they are just bystander effects of deregulated oncogenic signaling pathways or characterize early phases of tumorigenesis remains unclear. Here we show in a rat model of hepatocarcinogenesis that early preneoplastic foci and nodules that progress towards hepatocellular carcinoma (HCC) are characterized both by inhibition of oxidative phosphorylation (OXPHOS) and by enhanced glucose utilization to fuel the pentose phosphate pathway (PPP). These changes respectively require increased expression of the mitochondrial chaperone TRAP1 and of the transcription factor NRF2 that induces the expression of the rate-limiting PPP enzyme glucose-6-phosphate dehydrogenase (G6PD), following miR-1 inhibition. Such metabolic rewiring exclusively identifies a subset of aggressive cytokeratin-19 positive preneoplastic hepatocytes and not slowly growing lesions. No such metabolic changes were observed during non-neoplastic liver regeneration occurring after two/third partial hepatectomy. TRAP1 silencing inhibited the colony forming ability of HCC cells while NRF2 silencing decreased G6PD expression and concomitantly increased miR-1; conversely, transfection with miR-1 mimic abolished G6PD expression. Finally, in human HCC patients increased G6PD expression levels correlates with grading, metastasis and poor prognosis. Our results demonstrate that the metabolic deregulation orchestrated by TRAP1 and NRF2 is an early event restricted to the more aggressive preneoplastic lesions.
The biological functions of myotonic dystrophy protein kinase (DMPK), a serine/threonine kinase whose gene mutations cause myotonic dystrophy type 1 (DM1), remain poorly understood. Several DMPK isoforms exist, and the long ones (DMPK-A/B/C/D) are associated with the mitochondria, where they exert unknown activities. We have studied the isoform A of DMPK, which we have found to be prevalently associated to the outer mitochondrial membrane. The kinase activity of mitochondrial DMPK protects cells from oxidative stress and from the ensuing opening of the mitochondrial permeability transition pore (PTP), which would otherwise irreversibly commit cells to death. We observe that DMPK (i) increases the mitochondrial localization of hexokinase II (HK II), (ii) forms a multimeric complex with HK II and with the active form of the tyrosine kinase Src, binding its SH3 domain and (iii) it is tyrosine-phosphorylated by Src. Both interaction among these proteins and tyrosine phosphorylation of DMPK are increased under oxidative stress, and Src inhibition selectively enhances death in DMPK-expressing cells after HK II detachment from the mitochondria. Down-modulation of DMPK abolishes the appearance of muscle markers in in vitro myogenesis, which is rescued by oxidant scavenging. Our data indicate that, together with HK II and Src, mitochondrial DMPK is part of a multimolecular complex endowed with antioxidant and pro-survival properties that could be relevant during the function and differentiation of muscle fibers.
Introduction and aim: Among the several changes underlying metabolic reprogramming of cancer cells, increased glucose utilization and its uncoupling from oxygen availability is a well-established phenomenon and has been recognized as a hallmark of cancer. To what extent these metabolic changes are important for the progression of slow growing tumors and whether a metabolic rewiring occurs in the very early stages of neoplastic progression represent key questions on the significance of these metabolic alterations in cancer. Here, we compared the metabolic features of preneoplastic hepatic lesions with those of advanced hepatocellular carcinomas (HCCs) and of proliferating liver, following partial hepatectomy (PH). Materials and Methods: Expression levels, activity and modulation of several enzymes with key roles in glycolysis, pentose phosphate pathway (PPP) and oxidative phosphorylation (OXPHOS) were assessed in preneoplastic hepatic lesions and HCC, induced in rats exposed to the Resistant-Hepatocyte (R-H) model. In vitro experiments were performed on HCC cells obtained by perfusion of HCC-bearing rats. Expression of metabolic genes was also investigated in two different cohorts of human patients carrying HCC. Results and discussion: A switch from OXPHOS to PPP was observed in very early preneoplastic lesions generated 10 weeks after the treatment with DENA. Notably, this metabolic reprogramming was observed only in the most aggressive preneoplastic lesions, characterized by positivity for cytokeratin 19 (CK-19+). PPP induction, shown by a strong increase in the expression and activity of glucose 6-phosphate dehydrogenase (G6PD) was supported both by inhibition of pyruvate kinase activity and by TP53-inducible glycolysis and apoptosis regulator (TIGAR) induction. Importantly, such metabolic rewiring was not observed in normal hepatocytes, undergoing proliferation following 2/3 partial hepatectomy (PH). Activation of the NRF2/KEAP1 pathway and down-regulation of miR-1 accompanied the metabolic reprogramming in CK-19+ preneoplastic lesions. Accordingly, NRF2 silencing decreased G6PD and increased miR-1 expression, consequently inhibiting PPP, while forced expression of miR-1 downregulated G6PD expression in HCC cells. Finally, an inverse correlation between miR-1 and its target gene G6PD was found in human HCC patients. Conclusion: These results demonstrate that metabolic reprogramming takes place at early stages of hepatocarcinogenesis and is likely the consequence of the concomitant activation of the NRF2-KEAP1 pathway. Citation Format: Marta A. Kowalik, Giulia Guzzo, Andrea Morandi, Andrea Perra, Silvia Menegon, Ionica Masgras, Elena Trevisan, Maria M. Angioni, Francesca Fornari, Luca Quagliata, Giovanna M. Ledda-Columbano, Laura Gramantieri, Luigi Terracciano, Silvia Giordano, Paola Chiarugi, Andrea Rasola, Amedeo Columbano. Metabolic reprogramming discriminates aggressive vs. slowly growing preneoplastic lesions at early stages of HCC development. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 1009.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.