We summarize and critically evaluate the available data on nuclear fusion cross sections important to energy generation in the Sun and other hydrogen-burning stars and to solar neutrino production. Recommended values and uncertainties are provided for key cross sections, and a recommended spectrum is given for 8 B solar neutrinos. We also discuss opportunities for further increasing the precision of key rates, including new facilities, new experimental techniques, and improvements in theory. This review, which summarizes the conclusions of a workshop held at the Institute for Nuclear Theory, Seattle, in January 2009, is intended as a 10-year update and supplement to Reviews of Modern Physics 70 (1998) 1265.
The paper describes a multilevel, multichannel R-matrix code, AZURE, for applications in nuclear astrophysics. The code allows simultaneous analysis and extrapolation of low-energy particle scattering, capture, and reaction cross sections of relevance to stellar hydrogen, helium, and carbon burning. The paper presents a summary of R-matrix theory, code description, and a number of applications to demonstrate the applicability and versatility of AZURE.
The creation of carbon and oxygen in our universe is one of the forefront questions in nuclear astrophysics. The determination of the abundance of these elements is key to both our understanding of the formation of life on earth and to the life cycles of stars. While nearly all models of different nucleosynthesis environments are affected by the production of carbon and oxygen, a key ingredient, the precise determination of the reaction rate of 12 C(α, γ) 16 O, has long remained elusive. This is owed to the reaction's inaccessibility, both experimentally and theoretically. Nuclear theory has struggled to calculate this reaction rate because the cross section is produced through different underlying nuclear mechanisms. Isospin selection rules suppress the E1 component of the ground state cross section, creating a unique situation where the E1 and E2 contributions are of nearly equal amplitudes. Experimentally there have also been great challenges. Measurements have been pushed to the limits of state of the art techniques, often developed for just these measurements. The data have been plagued by uncharacterized uncertainties, often the result of the novel measurement techniques, that have made the different results challenging to reconcile. However, the situation has markedly improved in recent years, and the desired level of uncertainty, ≈10%, may be in sight. In this review the current understanding of this critical reaction is summarized. The emphasis is placed primarily on the experimental work and interpretation of the reaction data, but discussions of the theory and astrophysics are also pursued. The main goal is to summarize and clarify the current understanding of the reaction and then point the way forward to an improved determination of the reaction rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.