In this study, a novel composite bone substitute was implanted in animal models (rats) and their in vivo characteristics were examined. A D,L-lactide and ∊-caprolactone copolymer (Mw: 80,000; Mn:40,000, and PI:2.00) was synthesized by ring-opening polymerization of the respective dimers using stannous octoate as the catalyst. The final ratio of D,L-lactide to ∊-caprolactone obtained by 1NMR was 60/40. Hydroxyapatite (HA) powder was loaded in the copolymer. The HA/copolymer ratio was 60/40 (w/w). These composites were easily shaped by hand. Animal tests were performed on mature wistar rats (n=30). Defects were created on the proximal, the thickest part of the femur. The bone defects of the first group were filled with polymer/HA composite, the second group filled with only HA and the third group was left empty. Histologic examination of bone tissues showed new bone formation around the yellow-green polymer/HA composite material in the first group of animals whereas no evidence of new bone growth was observed in other groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.